faster-rcnn_regnetx-3.2GF_fpn_1x_coco.py 968 B

123456789101112131415161718192021222324252627282930
  1. _base_ = [
  2. '../_base_/models/faster-rcnn_r50_fpn.py',
  3. '../_base_/datasets/coco_detection.py',
  4. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  5. ]
  6. model = dict(
  7. data_preprocessor=dict(
  8. # The mean and std are used in PyCls when training RegNets
  9. mean=[103.53, 116.28, 123.675],
  10. std=[57.375, 57.12, 58.395],
  11. bgr_to_rgb=False),
  12. backbone=dict(
  13. _delete_=True,
  14. type='RegNet',
  15. arch='regnetx_3.2gf',
  16. out_indices=(0, 1, 2, 3),
  17. frozen_stages=1,
  18. norm_cfg=dict(type='BN', requires_grad=True),
  19. norm_eval=True,
  20. style='pytorch',
  21. init_cfg=dict(
  22. type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')),
  23. neck=dict(
  24. type='FPN',
  25. in_channels=[96, 192, 432, 1008],
  26. out_channels=256,
  27. num_outs=5))
  28. optim_wrapper = dict(
  29. optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.00005))