metafile.yml 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. Collections:
  2. - Name: Mask2Former
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - AdamW
  7. - Weight Decay
  8. Training Resources: 8x A100 GPUs
  9. Architecture:
  10. - Mask2Former
  11. Paper:
  12. URL: https://arxiv.org/pdf/2112.01527
  13. Title: 'Masked-attention Mask Transformer for Universal Image Segmentation'
  14. README: configs/mask2former/README.md
  15. Code:
  16. URL: https://github.com/open-mmlab/mmdetection/blob/v2.23.0/mmdet/models/detectors/mask2former.py#L7
  17. Version: v2.23.0
  18. Models:
  19. - Name: mask2former_swin-s-p4-w7-224_8xb2-lsj-50e_coco-panoptic
  20. In Collection: Mask2Former
  21. Config: configs/mask2former/mask2former_swin-s-p4-w7-224_8xb2-lsj-50e_coco-panoptic.py
  22. Metadata:
  23. Training Memory (GB): 19.1
  24. Iterations: 368750
  25. Results:
  26. - Task: Object Detection
  27. Dataset: COCO
  28. Metrics:
  29. box AP: 47.8
  30. - Task: Instance Segmentation
  31. Dataset: COCO
  32. Metrics:
  33. mask AP: 44.5
  34. - Task: Panoptic Segmentation
  35. Dataset: COCO
  36. Metrics:
  37. PQ: 54.5
  38. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_swin-s-p4-w7-224_8xb2-lsj-50e_coco-panoptic/mask2former_swin-s-p4-w7-224_8xb2-lsj-50e_coco-panoptic_20220329_225200-4a16ded7.pth
  39. - Name: mask2former_r101_8xb2-lsj-50e_coco
  40. In Collection: Mask2Former
  41. Config: configs/mask2former/mask2former_r101_8xb2-lsj-50e_coco.py
  42. Metadata:
  43. Training Memory (GB): 15.5
  44. Iterations: 368750
  45. Results:
  46. - Task: Object Detection
  47. Dataset: COCO
  48. Metrics:
  49. box AP: 46.7
  50. - Task: Instance Segmentation
  51. Dataset: COCO
  52. Metrics:
  53. mask AP: 44.0
  54. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_r101_8xb2-lsj-50e_coco/mask2former_r101_8xb2-lsj-50e_coco_20220426_100250-ecf181e2.pth
  55. - Name: mask2former_r101_8xb2-lsj-50e_coco-panoptic
  56. In Collection: Mask2Former
  57. Config: configs/mask2former/mask2former_r101_8xb2-lsj-50e_coco-panoptic.py
  58. Metadata:
  59. Training Memory (GB): 16.1
  60. Iterations: 368750
  61. Results:
  62. - Task: Object Detection
  63. Dataset: COCO
  64. Metrics:
  65. box AP: 45.3
  66. - Task: Instance Segmentation
  67. Dataset: COCO
  68. Metrics:
  69. mask AP: 42.4
  70. - Task: Panoptic Segmentation
  71. Dataset: COCO
  72. Metrics:
  73. PQ: 52.4
  74. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_r101_8xb2-lsj-50e_coco-panoptic/mask2former_r101_8xb2-lsj-50e_coco-panoptic_20220329_225104-c74d4d71.pth
  75. - Name: mask2former_r50_8xb2-lsj-50e_coco-panoptic
  76. In Collection: Mask2Former
  77. Config: configs/mask2former/mask2former_r50_8xb2-lsj-50e_coco-panoptic.py
  78. Metadata:
  79. Training Memory (GB): 13.9
  80. Iterations: 368750
  81. Results:
  82. - Task: Object Detection
  83. Dataset: COCO
  84. Metrics:
  85. box AP: 44.5
  86. - Task: Instance Segmentation
  87. Dataset: COCO
  88. Metrics:
  89. mask AP: 41.8
  90. - Task: Panoptic Segmentation
  91. Dataset: COCO
  92. Metrics:
  93. PQ: 52.0
  94. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_r50_8xb2-lsj-50e_coco-panoptic/mask2former_r50_8xb2-lsj-50e_coco-panoptic_20230118_125535-54df384a.pth
  95. - Name: mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic
  96. In Collection: Mask2Former
  97. Config: configs/mask2former/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic.py
  98. Metadata:
  99. Training Memory (GB): 15.9
  100. Iterations: 368750
  101. Results:
  102. - Task: Object Detection
  103. Dataset: COCO
  104. Metrics:
  105. box AP: 46.3
  106. - Task: Instance Segmentation
  107. Dataset: COCO
  108. Metrics:
  109. mask AP: 43.4
  110. - Task: Panoptic Segmentation
  111. Dataset: COCO
  112. Metrics:
  113. PQ: 53.4
  114. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco-panoptic_20220326_224553-3ec9e0ae.pth
  115. - Name: mask2former_r50_8xb2-lsj-50e_coco
  116. In Collection: Mask2Former
  117. Config: configs/mask2former/mask2former_r50_8xb2-lsj-50e_coco.py
  118. Metadata:
  119. Training Memory (GB): 13.7
  120. Iterations: 368750
  121. Results:
  122. - Task: Object Detection
  123. Dataset: COCO
  124. Metrics:
  125. box AP: 45.7
  126. - Task: Instance Segmentation
  127. Dataset: COCO
  128. Metrics:
  129. mask AP: 42.9
  130. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_r50_8xb2-lsj-50e_coco/mask2former_r50_8xb2-lsj-50e_coco_20220506_191028-41b088b6.pth
  131. - Name: mask2former_swin-l-p4-w12-384-in21k_16xb1-lsj-100e_coco-panoptic
  132. In Collection: Mask2Former
  133. Config: configs/mask2former/mask2former_swin-l-p4-w12-384-in21k_16xb1-lsj-100e_coco-panoptic.py
  134. Metadata:
  135. Training Memory (GB): 21.1
  136. Iterations: 737500
  137. Results:
  138. - Task: Object Detection
  139. Dataset: COCO
  140. Metrics:
  141. box AP: 52.2
  142. - Task: Instance Segmentation
  143. Dataset: COCO
  144. Metrics:
  145. mask AP: 48.5
  146. - Task: Panoptic Segmentation
  147. Dataset: COCO
  148. Metrics:
  149. PQ: 57.6
  150. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_swin-l-p4-w12-384-in21k_16xb1-lsj-100e_coco-panoptic/mask2former_swin-l-p4-w12-384-in21k_16xb1-lsj-100e_coco-panoptic_20220407_104949-82f8d28d.pth
  151. - Name: mask2former_swin-b-p4-w12-384-in21k_8xb2-lsj-50e_coco-panoptic
  152. In Collection: Mask2Former
  153. Config: configs/mask2former/mask2former_swin-b-p4-w12-384-in21k_8xb2-lsj-50e_coco-panoptic.py
  154. Metadata:
  155. Training Memory (GB): 25.8
  156. Iterations: 368750
  157. Results:
  158. - Task: Object Detection
  159. Dataset: COCO
  160. Metrics:
  161. box AP: 50.0
  162. - Task: Instance Segmentation
  163. Dataset: COCO
  164. Metrics:
  165. mask AP: 46.3
  166. - Task: Panoptic Segmentation
  167. Dataset: COCO
  168. Metrics:
  169. PQ: 56.3
  170. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_swin-b-p4-w12-384-in21k_8xb2-lsj-50e_coco-panoptic/mask2former_swin-b-p4-w12-384-in21k_8xb2-lsj-50e_coco-panoptic_20220329_230021-05ec7315.pth
  171. - Name: mask2former_swin-b-p4-w12-384_8xb2-lsj-50e_coco-panoptic
  172. In Collection: Mask2Former
  173. Config: configs/mask2former/mask2former_swin-b-p4-w12-384_8xb2-lsj-50e_coco-panoptic.py
  174. Metadata:
  175. Training Memory (GB): 26.0
  176. Iterations: 368750
  177. Results:
  178. - Task: Object Detection
  179. Dataset: COCO
  180. Metrics:
  181. box AP: 48.2
  182. - Task: Instance Segmentation
  183. Dataset: COCO
  184. Metrics:
  185. mask AP: 44.9
  186. - Task: Panoptic Segmentation
  187. Dataset: COCO
  188. Metrics:
  189. PQ: 55.1
  190. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_swin-b-p4-w12-384_8xb2-lsj-50e_coco-panoptic/mask2former_swin-b-p4-w12-384_8xb2-lsj-50e_coco-panoptic_20220331_002244-8a651d82.pth
  191. - Name: mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco
  192. In Collection: Mask2Former
  193. Config: configs/mask2former/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco.py
  194. Metadata:
  195. Training Memory (GB): 15.3
  196. Iterations: 368750
  197. Results:
  198. - Task: Object Detection
  199. Dataset: COCO
  200. Metrics:
  201. box AP: 47.7
  202. - Task: Instance Segmentation
  203. Dataset: COCO
  204. Metrics:
  205. mask AP: 44.7
  206. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco/mask2former_swin-t-p4-w7-224_8xb2-lsj-50e_coco_20220508_091649-01b0f990.pth
  207. - Name: mask2former_swin-s-p4-w7-224_8xb2-lsj-50e_coco
  208. In Collection: Mask2Former
  209. Config: configs/mask2former/mask2former_swin-s-p4-w7-224_8xb2-lsj-50e_coco.py
  210. Metadata:
  211. Training Memory (GB): 18.8
  212. Iterations: 368750
  213. Results:
  214. - Task: Object Detection
  215. Dataset: COCO
  216. Metrics:
  217. box AP: 49.3
  218. - Task: Instance Segmentation
  219. Dataset: COCO
  220. Metrics:
  221. mask AP: 46.1
  222. Weights: https://download.openmmlab.com/mmdetection/v3.0/mask2former/mask2former_swin-s-p4-w7-224_8xb2-lsj-50e_coco/mask2former_swin-s-p4-w7-224_8xb2-lsj-50e_coco_20220504_001756-c9d0c4f2.pth