metafile.yml 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. Collections:
  2. - Name: Libra R-CNN
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - IoU-Balanced Sampling
  7. - SGD with Momentum
  8. - Weight Decay
  9. Training Resources: 8x V100 GPUs
  10. Architecture:
  11. - Balanced Feature Pyramid
  12. Paper:
  13. URL: https://arxiv.org/abs/1904.02701
  14. Title: 'Libra R-CNN: Towards Balanced Learning for Object Detection'
  15. README: configs/libra_rcnn/README.md
  16. Code:
  17. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/necks/bfp.py#L10
  18. Version: v2.0.0
  19. Models:
  20. - Name: libra-faster-rcnn_r50_fpn_1x_coco
  21. In Collection: Libra R-CNN
  22. Config: configs/libra_rcnn/libra-faster-rcnn_r50_fpn_1x_coco.py
  23. Metadata:
  24. Training Memory (GB): 4.6
  25. inference time (ms/im):
  26. - value: 52.63
  27. hardware: V100
  28. backend: PyTorch
  29. batch size: 1
  30. mode: FP32
  31. resolution: (800, 1333)
  32. Epochs: 12
  33. Results:
  34. - Task: Object Detection
  35. Dataset: COCO
  36. Metrics:
  37. box AP: 38.3
  38. Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r50_fpn_1x_coco/libra_faster_rcnn_r50_fpn_1x_coco_20200130-3afee3a9.pth
  39. - Name: libra-faster-rcnn_r101_fpn_1x_coco
  40. In Collection: Libra R-CNN
  41. Config: configs/libra_rcnn/libra-faster-rcnn_r101_fpn_1x_coco.py
  42. Metadata:
  43. Training Memory (GB): 6.5
  44. inference time (ms/im):
  45. - value: 69.44
  46. hardware: V100
  47. backend: PyTorch
  48. batch size: 1
  49. mode: FP32
  50. resolution: (800, 1333)
  51. Epochs: 12
  52. Results:
  53. - Task: Object Detection
  54. Dataset: COCO
  55. Metrics:
  56. box AP: 40.1
  57. Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco/libra_faster_rcnn_r101_fpn_1x_coco_20200203-8dba6a5a.pth
  58. - Name: libra-faster-rcnn_x101-64x4d_fpn_1x_coco
  59. In Collection: Libra R-CNN
  60. Config: configs/libra_rcnn/libra-faster-rcnn_x101-64x4d_fpn_1x_coco.py
  61. Metadata:
  62. Training Memory (GB): 10.8
  63. inference time (ms/im):
  64. - value: 117.65
  65. hardware: V100
  66. backend: PyTorch
  67. batch size: 1
  68. mode: FP32
  69. resolution: (800, 1333)
  70. Epochs: 12
  71. Results:
  72. - Task: Object Detection
  73. Dataset: COCO
  74. Metrics:
  75. box AP: 42.7
  76. Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco/libra_faster_rcnn_x101_64x4d_fpn_1x_coco_20200315-3a7d0488.pth
  77. - Name: libra-retinanet_r50_fpn_1x_coco
  78. In Collection: Libra R-CNN
  79. Config: configs/libra_rcnn/libra-retinanet_r50_fpn_1x_coco.py
  80. Metadata:
  81. Training Memory (GB): 4.2
  82. inference time (ms/im):
  83. - value: 56.5
  84. hardware: V100
  85. backend: PyTorch
  86. batch size: 1
  87. mode: FP32
  88. resolution: (800, 1333)
  89. Epochs: 12
  90. Results:
  91. - Task: Object Detection
  92. Dataset: COCO
  93. Metrics:
  94. box AP: 37.6
  95. Weights: https://download.openmmlab.com/mmdetection/v2.0/libra_rcnn/libra_retinanet_r50_fpn_1x_coco/libra_retinanet_r50_fpn_1x_coco_20200205-804d94ce.pth