metafile.yml 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971
  1. Models:
  2. - Name: faster-rcnn_hrnetv2p-w18-1x_coco
  3. In Collection: Faster R-CNN
  4. Config: configs/hrnet/faster-rcnn_hrnetv2p-w18-1x_coco.py
  5. Metadata:
  6. Training Memory (GB): 6.6
  7. inference time (ms/im):
  8. - value: 74.63
  9. hardware: V100
  10. backend: PyTorch
  11. batch size: 1
  12. mode: FP32
  13. resolution: (800, 1333)
  14. Epochs: 12
  15. Training Data: COCO
  16. Training Techniques:
  17. - SGD with Momentum
  18. - Weight Decay
  19. Training Resources: 8x V100 GPUs
  20. Architecture:
  21. - HRNet
  22. Results:
  23. - Task: Object Detection
  24. Dataset: COCO
  25. Metrics:
  26. box AP: 36.9
  27. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco/faster_rcnn_hrnetv2p_w18_1x_coco_20200130-56651a6d.pth
  28. Paper:
  29. URL: https://arxiv.org/abs/1904.04514
  30. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  31. README: configs/hrnet/README.md
  32. Code:
  33. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  34. Version: v2.0.0
  35. - Name: faster-rcnn_hrnetv2p-w18-2x_coco
  36. In Collection: Faster R-CNN
  37. Config: configs/hrnet/faster-rcnn_hrnetv2p-w18-2x_coco.py
  38. Metadata:
  39. Training Memory (GB): 6.6
  40. inference time (ms/im):
  41. - value: 74.63
  42. hardware: V100
  43. backend: PyTorch
  44. batch size: 1
  45. mode: FP32
  46. resolution: (800, 1333)
  47. Epochs: 24
  48. Training Data: COCO
  49. Training Techniques:
  50. - SGD with Momentum
  51. - Weight Decay
  52. Training Resources: 8x V100 GPUs
  53. Architecture:
  54. - HRNet
  55. Results:
  56. - Task: Object Detection
  57. Dataset: COCO
  58. Metrics:
  59. box AP: 38.9
  60. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco/faster_rcnn_hrnetv2p_w18_2x_coco_20200702_085731-a4ec0611.pth
  61. Paper:
  62. URL: https://arxiv.org/abs/1904.04514
  63. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  64. README: configs/hrnet/README.md
  65. Code:
  66. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  67. Version: v2.0.0
  68. - Name: faster-rcnn_hrnetv2p-w32-1x_coco
  69. In Collection: Faster R-CNN
  70. Config: configs/hrnet/faster-rcnn_hrnetv2p-w32-1x_coco.py
  71. Metadata:
  72. Training Memory (GB): 9.0
  73. inference time (ms/im):
  74. - value: 80.65
  75. hardware: V100
  76. backend: PyTorch
  77. batch size: 1
  78. mode: FP32
  79. resolution: (800, 1333)
  80. Epochs: 12
  81. Training Data: COCO
  82. Training Techniques:
  83. - SGD with Momentum
  84. - Weight Decay
  85. Training Resources: 8x V100 GPUs
  86. Architecture:
  87. - HRNet
  88. Results:
  89. - Task: Object Detection
  90. Dataset: COCO
  91. Metrics:
  92. box AP: 40.2
  93. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_1x_coco/faster_rcnn_hrnetv2p_w32_1x_coco_20200130-6e286425.pth
  94. Paper:
  95. URL: https://arxiv.org/abs/1904.04514
  96. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  97. README: configs/hrnet/README.md
  98. Code:
  99. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  100. Version: v2.0.0
  101. - Name: faster-rcnn_hrnetv2p-w32_2x_coco
  102. In Collection: Faster R-CNN
  103. Config: configs/hrnet/faster-rcnn_hrnetv2p-w32_2x_coco.py
  104. Metadata:
  105. Training Memory (GB): 9.0
  106. inference time (ms/im):
  107. - value: 80.65
  108. hardware: V100
  109. backend: PyTorch
  110. batch size: 1
  111. mode: FP32
  112. resolution: (800, 1333)
  113. Epochs: 24
  114. Training Data: COCO
  115. Training Techniques:
  116. - SGD with Momentum
  117. - Weight Decay
  118. Training Resources: 8x V100 GPUs
  119. Architecture:
  120. - HRNet
  121. Results:
  122. - Task: Object Detection
  123. Dataset: COCO
  124. Metrics:
  125. box AP: 41.4
  126. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco/faster_rcnn_hrnetv2p_w32_2x_coco_20200529_015927-976a9c15.pth
  127. Paper:
  128. URL: https://arxiv.org/abs/1904.04514
  129. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  130. README: configs/hrnet/README.md
  131. Code:
  132. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  133. Version: v2.0.0
  134. - Name: faster-rcnn_hrnetv2p-w40-1x_coco
  135. In Collection: Faster R-CNN
  136. Config: configs/hrnet/faster-rcnn_hrnetv2p-w40-1x_coco.py
  137. Metadata:
  138. Training Memory (GB): 10.4
  139. inference time (ms/im):
  140. - value: 95.24
  141. hardware: V100
  142. backend: PyTorch
  143. batch size: 1
  144. mode: FP32
  145. resolution: (800, 1333)
  146. Epochs: 12
  147. Training Data: COCO
  148. Training Techniques:
  149. - SGD with Momentum
  150. - Weight Decay
  151. Training Resources: 8x V100 GPUs
  152. Architecture:
  153. - HRNet
  154. Results:
  155. - Task: Object Detection
  156. Dataset: COCO
  157. Metrics:
  158. box AP: 41.2
  159. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco/faster_rcnn_hrnetv2p_w40_1x_coco_20200210-95c1f5ce.pth
  160. Paper:
  161. URL: https://arxiv.org/abs/1904.04514
  162. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  163. README: configs/hrnet/README.md
  164. Code:
  165. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  166. Version: v2.0.0
  167. - Name: faster-rcnn_hrnetv2p-w40_2x_coco
  168. In Collection: Faster R-CNN
  169. Config: configs/hrnet/faster-rcnn_hrnetv2p-w40_2x_coco.py
  170. Metadata:
  171. Training Memory (GB): 10.4
  172. inference time (ms/im):
  173. - value: 95.24
  174. hardware: V100
  175. backend: PyTorch
  176. batch size: 1
  177. mode: FP32
  178. resolution: (800, 1333)
  179. Epochs: 24
  180. Training Data: COCO
  181. Training Techniques:
  182. - SGD with Momentum
  183. - Weight Decay
  184. Training Resources: 8x V100 GPUs
  185. Architecture:
  186. - HRNet
  187. Results:
  188. - Task: Object Detection
  189. Dataset: COCO
  190. Metrics:
  191. box AP: 42.1
  192. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco/faster_rcnn_hrnetv2p_w40_2x_coco_20200512_161033-0f236ef4.pth
  193. Paper:
  194. URL: https://arxiv.org/abs/1904.04514
  195. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  196. README: configs/hrnet/README.md
  197. Code:
  198. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  199. Version: v2.0.0
  200. - Name: mask-rcnn_hrnetv2p-w18-1x_coco
  201. In Collection: Mask R-CNN
  202. Config: configs/hrnet/mask-rcnn_hrnetv2p-w18-1x_coco.py
  203. Metadata:
  204. Training Memory (GB): 7.0
  205. inference time (ms/im):
  206. - value: 85.47
  207. hardware: V100
  208. backend: PyTorch
  209. batch size: 1
  210. mode: FP32
  211. resolution: (800, 1333)
  212. Epochs: 12
  213. Training Data: COCO
  214. Training Techniques:
  215. - SGD with Momentum
  216. - Weight Decay
  217. Training Resources: 8x V100 GPUs
  218. Architecture:
  219. - HRNet
  220. Results:
  221. - Task: Object Detection
  222. Dataset: COCO
  223. Metrics:
  224. box AP: 37.7
  225. - Task: Instance Segmentation
  226. Dataset: COCO
  227. Metrics:
  228. mask AP: 34.2
  229. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco/mask_rcnn_hrnetv2p_w18_1x_coco_20200205-1c3d78ed.pth
  230. Paper:
  231. URL: https://arxiv.org/abs/1904.04514
  232. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  233. README: configs/hrnet/README.md
  234. Code:
  235. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  236. Version: v2.0.0
  237. - Name: mask-rcnn_hrnetv2p-w18-2x_coco
  238. In Collection: Mask R-CNN
  239. Config: configs/hrnet/mask-rcnn_hrnetv2p-w18-2x_coco.py
  240. Metadata:
  241. Training Memory (GB): 7.0
  242. inference time (ms/im):
  243. - value: 85.47
  244. hardware: V100
  245. backend: PyTorch
  246. batch size: 1
  247. mode: FP32
  248. resolution: (800, 1333)
  249. Epochs: 24
  250. Training Data: COCO
  251. Training Techniques:
  252. - SGD with Momentum
  253. - Weight Decay
  254. Training Resources: 8x V100 GPUs
  255. Architecture:
  256. - HRNet
  257. Results:
  258. - Task: Object Detection
  259. Dataset: COCO
  260. Metrics:
  261. box AP: 39.8
  262. - Task: Instance Segmentation
  263. Dataset: COCO
  264. Metrics:
  265. mask AP: 36.0
  266. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco/mask_rcnn_hrnetv2p_w18_2x_coco_20200212-b3c825b1.pth
  267. Paper:
  268. URL: https://arxiv.org/abs/1904.04514
  269. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  270. README: configs/hrnet/README.md
  271. Code:
  272. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  273. Version: v2.0.0
  274. - Name: mask-rcnn_hrnetv2p-w32-1x_coco
  275. In Collection: Mask R-CNN
  276. Config: configs/hrnet/mask-rcnn_hrnetv2p-w32-1x_coco.py
  277. Metadata:
  278. Training Memory (GB): 9.4
  279. inference time (ms/im):
  280. - value: 88.5
  281. hardware: V100
  282. backend: PyTorch
  283. batch size: 1
  284. mode: FP32
  285. resolution: (800, 1333)
  286. Epochs: 12
  287. Training Data: COCO
  288. Training Techniques:
  289. - SGD with Momentum
  290. - Weight Decay
  291. Training Resources: 8x V100 GPUs
  292. Architecture:
  293. - HRNet
  294. Results:
  295. - Task: Object Detection
  296. Dataset: COCO
  297. Metrics:
  298. box AP: 41.2
  299. - Task: Instance Segmentation
  300. Dataset: COCO
  301. Metrics:
  302. mask AP: 37.1
  303. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_1x_coco/mask_rcnn_hrnetv2p_w32_1x_coco_20200207-b29f616e.pth
  304. Paper:
  305. URL: https://arxiv.org/abs/1904.04514
  306. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  307. README: configs/hrnet/README.md
  308. Code:
  309. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  310. Version: v2.0.0
  311. - Name: mask-rcnn_hrnetv2p-w32-2x_coco
  312. In Collection: Mask R-CNN
  313. Config: configs/hrnet/mask-rcnn_hrnetv2p-w32-2x_coco.py
  314. Metadata:
  315. Training Memory (GB): 9.4
  316. inference time (ms/im):
  317. - value: 88.5
  318. hardware: V100
  319. backend: PyTorch
  320. batch size: 1
  321. mode: FP32
  322. resolution: (800, 1333)
  323. Epochs: 24
  324. Training Data: COCO
  325. Training Techniques:
  326. - SGD with Momentum
  327. - Weight Decay
  328. Training Resources: 8x V100 GPUs
  329. Architecture:
  330. - HRNet
  331. Results:
  332. - Task: Object Detection
  333. Dataset: COCO
  334. Metrics:
  335. box AP: 42.5
  336. - Task: Instance Segmentation
  337. Dataset: COCO
  338. Metrics:
  339. mask AP: 37.8
  340. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco/mask_rcnn_hrnetv2p_w32_2x_coco_20200213-45b75b4d.pth
  341. Paper:
  342. URL: https://arxiv.org/abs/1904.04514
  343. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  344. README: configs/hrnet/README.md
  345. Code:
  346. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  347. Version: v2.0.0
  348. - Name: mask-rcnn_hrnetv2p-w40_1x_coco
  349. In Collection: Mask R-CNN
  350. Config: configs/hrnet/mask-rcnn_hrnetv2p-w40_1x_coco.py
  351. Metadata:
  352. Training Memory (GB): 10.9
  353. Epochs: 12
  354. Training Data: COCO
  355. Training Techniques:
  356. - SGD with Momentum
  357. - Weight Decay
  358. Training Resources: 8x V100 GPUs
  359. Architecture:
  360. - HRNet
  361. Results:
  362. - Task: Object Detection
  363. Dataset: COCO
  364. Metrics:
  365. box AP: 42.1
  366. - Task: Instance Segmentation
  367. Dataset: COCO
  368. Metrics:
  369. mask AP: 37.5
  370. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco/mask_rcnn_hrnetv2p_w40_1x_coco_20200511_015646-66738b35.pth
  371. Paper:
  372. URL: https://arxiv.org/abs/1904.04514
  373. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  374. README: configs/hrnet/README.md
  375. Code:
  376. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  377. Version: v2.0.0
  378. - Name: mask-rcnn_hrnetv2p-w40-2x_coco
  379. In Collection: Mask R-CNN
  380. Config: configs/hrnet/mask-rcnn_hrnetv2p-w40-2x_coco.py
  381. Metadata:
  382. Training Memory (GB): 10.9
  383. Epochs: 24
  384. Training Data: COCO
  385. Training Techniques:
  386. - SGD with Momentum
  387. - Weight Decay
  388. Training Resources: 8x V100 GPUs
  389. Architecture:
  390. - HRNet
  391. Results:
  392. - Task: Object Detection
  393. Dataset: COCO
  394. Metrics:
  395. box AP: 42.8
  396. - Task: Instance Segmentation
  397. Dataset: COCO
  398. Metrics:
  399. mask AP: 38.2
  400. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco/mask_rcnn_hrnetv2p_w40_2x_coco_20200512_163732-aed5e4ab.pth
  401. Paper:
  402. URL: https://arxiv.org/abs/1904.04514
  403. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  404. README: configs/hrnet/README.md
  405. Code:
  406. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  407. Version: v2.0.0
  408. - Name: cascade-rcnn_hrnetv2p-w18-20e_coco
  409. In Collection: Cascade R-CNN
  410. Config: configs/hrnet/cascade-rcnn_hrnetv2p-w18-20e_coco.py
  411. Metadata:
  412. Training Memory (GB): 7.0
  413. inference time (ms/im):
  414. - value: 90.91
  415. hardware: V100
  416. backend: PyTorch
  417. batch size: 1
  418. mode: FP32
  419. resolution: (800, 1333)
  420. Epochs: 20
  421. Training Data: COCO
  422. Training Techniques:
  423. - SGD with Momentum
  424. - Weight Decay
  425. Training Resources: 8x V100 GPUs
  426. Architecture:
  427. - HRNet
  428. Results:
  429. - Task: Object Detection
  430. Dataset: COCO
  431. Metrics:
  432. box AP: 41.2
  433. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco/cascade_rcnn_hrnetv2p_w18_20e_coco_20200210-434be9d7.pth
  434. Paper:
  435. URL: https://arxiv.org/abs/1904.04514
  436. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  437. README: configs/hrnet/README.md
  438. Code:
  439. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  440. Version: v2.0.0
  441. - Name: cascade-rcnn_hrnetv2p-w32-20e_coco
  442. In Collection: Cascade R-CNN
  443. Config: configs/hrnet/cascade-rcnn_hrnetv2p-w32-20e_coco.py
  444. Metadata:
  445. Training Memory (GB): 9.4
  446. inference time (ms/im):
  447. - value: 90.91
  448. hardware: V100
  449. backend: PyTorch
  450. batch size: 1
  451. mode: FP32
  452. resolution: (800, 1333)
  453. Epochs: 20
  454. Training Data: COCO
  455. Training Techniques:
  456. - SGD with Momentum
  457. - Weight Decay
  458. Training Resources: 8x V100 GPUs
  459. Architecture:
  460. - HRNet
  461. Results:
  462. - Task: Object Detection
  463. Dataset: COCO
  464. Metrics:
  465. box AP: 43.3
  466. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w32_20e_coco/cascade_rcnn_hrnetv2p_w32_20e_coco_20200208-928455a4.pth
  467. Paper:
  468. URL: https://arxiv.org/abs/1904.04514
  469. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  470. README: configs/hrnet/README.md
  471. Code:
  472. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  473. Version: v2.0.0
  474. - Name: cascade-rcnn_hrnetv2p-w40-20e_coco
  475. In Collection: Cascade R-CNN
  476. Config: configs/hrnet/cascade-rcnn_hrnetv2p-w40-20e_coco.py
  477. Metadata:
  478. Training Memory (GB): 10.8
  479. Epochs: 20
  480. Training Data: COCO
  481. Training Techniques:
  482. - SGD with Momentum
  483. - Weight Decay
  484. Training Resources: 8x V100 GPUs
  485. Architecture:
  486. - HRNet
  487. Results:
  488. - Task: Object Detection
  489. Dataset: COCO
  490. Metrics:
  491. box AP: 43.8
  492. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco/cascade_rcnn_hrnetv2p_w40_20e_coco_20200512_161112-75e47b04.pth
  493. Paper:
  494. URL: https://arxiv.org/abs/1904.04514
  495. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  496. README: configs/hrnet/README.md
  497. Code:
  498. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  499. Version: v2.0.0
  500. - Name: cascade-mask-rcnn_hrnetv2p-w18_20e_coco
  501. In Collection: Cascade R-CNN
  502. Config: configs/hrnet/cascade-mask-rcnn_hrnetv2p-w18_20e_coco.py
  503. Metadata:
  504. Training Memory (GB): 8.5
  505. inference time (ms/im):
  506. - value: 117.65
  507. hardware: V100
  508. backend: PyTorch
  509. batch size: 1
  510. mode: FP32
  511. resolution: (800, 1333)
  512. Epochs: 20
  513. Training Data: COCO
  514. Training Techniques:
  515. - SGD with Momentum
  516. - Weight Decay
  517. Training Resources: 8x V100 GPUs
  518. Architecture:
  519. - HRNet
  520. Results:
  521. - Task: Object Detection
  522. Dataset: COCO
  523. Metrics:
  524. box AP: 41.6
  525. - Task: Instance Segmentation
  526. Dataset: COCO
  527. Metrics:
  528. mask AP: 36.4
  529. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco/cascade_mask_rcnn_hrnetv2p_w18_20e_coco_20200210-b543cd2b.pth
  530. Paper:
  531. URL: https://arxiv.org/abs/1904.04514
  532. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  533. README: configs/hrnet/README.md
  534. Code:
  535. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  536. Version: v2.0.0
  537. - Name: cascade-mask-rcnn_hrnetv2p-w32_20e_coco
  538. In Collection: Cascade R-CNN
  539. Config: configs/hrnet/cascade-mask-rcnn_hrnetv2p-w32_20e_coco.py
  540. Metadata:
  541. inference time (ms/im):
  542. - value: 120.48
  543. hardware: V100
  544. backend: PyTorch
  545. batch size: 1
  546. mode: FP32
  547. resolution: (800, 1333)
  548. Epochs: 20
  549. Training Data: COCO
  550. Training Techniques:
  551. - SGD with Momentum
  552. - Weight Decay
  553. Training Resources: 8x V100 GPUs
  554. Architecture:
  555. - HRNet
  556. Results:
  557. - Task: Object Detection
  558. Dataset: COCO
  559. Metrics:
  560. box AP: 44.3
  561. - Task: Instance Segmentation
  562. Dataset: COCO
  563. Metrics:
  564. mask AP: 38.6
  565. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w32_20e_coco/cascade_mask_rcnn_hrnetv2p_w32_20e_coco_20200512_154043-39d9cf7b.pth
  566. Paper:
  567. URL: https://arxiv.org/abs/1904.04514
  568. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  569. README: configs/hrnet/README.md
  570. Code:
  571. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  572. Version: v2.0.0
  573. - Name: cascade-mask-rcnn_hrnetv2p-w40-20e_coco
  574. In Collection: Cascade R-CNN
  575. Config: configs/hrnet/cascade-mask-rcnn_hrnetv2p-w40-20e_coco.py
  576. Metadata:
  577. Training Memory (GB): 12.5
  578. Epochs: 20
  579. Training Data: COCO
  580. Training Techniques:
  581. - SGD with Momentum
  582. - Weight Decay
  583. Training Resources: 8x V100 GPUs
  584. Architecture:
  585. - HRNet
  586. Results:
  587. - Task: Object Detection
  588. Dataset: COCO
  589. Metrics:
  590. box AP: 45.1
  591. - Task: Instance Segmentation
  592. Dataset: COCO
  593. Metrics:
  594. mask AP: 39.3
  595. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco/cascade_mask_rcnn_hrnetv2p_w40_20e_coco_20200527_204922-969c4610.pth
  596. Paper:
  597. URL: https://arxiv.org/abs/1904.04514
  598. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  599. README: configs/hrnet/README.md
  600. Code:
  601. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  602. Version: v2.0.0
  603. - Name: htc_hrnetv2p-w18_20e_coco
  604. In Collection: HTC
  605. Config: configs/hrnet/htc_hrnetv2p-w18_20e_coco.py
  606. Metadata:
  607. Training Memory (GB): 10.8
  608. inference time (ms/im):
  609. - value: 212.77
  610. hardware: V100
  611. backend: PyTorch
  612. batch size: 1
  613. mode: FP32
  614. resolution: (800, 1333)
  615. Epochs: 20
  616. Training Data: COCO
  617. Training Techniques:
  618. - SGD with Momentum
  619. - Weight Decay
  620. Training Resources: 8x V100 GPUs
  621. Architecture:
  622. - HRNet
  623. Results:
  624. - Task: Object Detection
  625. Dataset: COCO
  626. Metrics:
  627. box AP: 42.8
  628. - Task: Instance Segmentation
  629. Dataset: COCO
  630. Metrics:
  631. mask AP: 37.9
  632. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w18_20e_coco/htc_hrnetv2p_w18_20e_coco_20200210-b266988c.pth
  633. Paper:
  634. URL: https://arxiv.org/abs/1904.04514
  635. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  636. README: configs/hrnet/README.md
  637. Code:
  638. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  639. Version: v2.0.0
  640. - Name: htc_hrnetv2p-w32_20e_coco
  641. In Collection: HTC
  642. Config: configs/hrnet/htc_hrnetv2p-w32_20e_coco.py
  643. Metadata:
  644. Training Memory (GB): 13.1
  645. inference time (ms/im):
  646. - value: 204.08
  647. hardware: V100
  648. backend: PyTorch
  649. batch size: 1
  650. mode: FP32
  651. resolution: (800, 1333)
  652. Epochs: 20
  653. Training Data: COCO
  654. Training Techniques:
  655. - SGD with Momentum
  656. - Weight Decay
  657. Training Resources: 8x V100 GPUs
  658. Architecture:
  659. - HRNet
  660. Results:
  661. - Task: Object Detection
  662. Dataset: COCO
  663. Metrics:
  664. box AP: 45.4
  665. - Task: Instance Segmentation
  666. Dataset: COCO
  667. Metrics:
  668. mask AP: 39.9
  669. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w32_20e_coco/htc_hrnetv2p_w32_20e_coco_20200207-7639fa12.pth
  670. Paper:
  671. URL: https://arxiv.org/abs/1904.04514
  672. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  673. README: configs/hrnet/README.md
  674. Code:
  675. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  676. Version: v2.0.0
  677. - Name: htc_hrnetv2p-w40_20e_coco
  678. In Collection: HTC
  679. Config: configs/hrnet/htc_hrnetv2p-w40_20e_coco.py
  680. Metadata:
  681. Training Memory (GB): 14.6
  682. Epochs: 20
  683. Training Data: COCO
  684. Training Techniques:
  685. - SGD with Momentum
  686. - Weight Decay
  687. Training Resources: 8x V100 GPUs
  688. Architecture:
  689. - HRNet
  690. Results:
  691. - Task: Object Detection
  692. Dataset: COCO
  693. Metrics:
  694. box AP: 46.4
  695. - Task: Instance Segmentation
  696. Dataset: COCO
  697. Metrics:
  698. mask AP: 40.8
  699. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/htc_hrnetv2p_w40_20e_coco/htc_hrnetv2p_w40_20e_coco_20200529_183411-417c4d5b.pth
  700. Paper:
  701. URL: https://arxiv.org/abs/1904.04514
  702. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  703. README: configs/hrnet/README.md
  704. Code:
  705. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  706. Version: v2.0.0
  707. - Name: fcos_hrnetv2p-w18-gn-head_4xb4-1x_coco
  708. In Collection: FCOS
  709. Config: configs/hrnet/fcos_hrnetv2p-w18-gn-head_4xb4-1x_coco.py
  710. Metadata:
  711. Training Resources: 4x V100 GPUs
  712. Batch Size: 16
  713. Training Memory (GB): 13.0
  714. inference time (ms/im):
  715. - value: 77.52
  716. hardware: V100
  717. backend: PyTorch
  718. batch size: 1
  719. mode: FP32
  720. resolution: (800, 1333)
  721. Epochs: 12
  722. Training Data: COCO
  723. Training Techniques:
  724. - SGD with Momentum
  725. - Weight Decay
  726. Architecture:
  727. - HRNet
  728. Results:
  729. - Task: Object Detection
  730. Dataset: COCO
  731. Metrics:
  732. box AP: 35.3
  733. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco_20201212_100710-4ad151de.pth
  734. Paper:
  735. URL: https://arxiv.org/abs/1904.04514
  736. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  737. README: configs/hrnet/README.md
  738. Code:
  739. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  740. Version: v2.0.0
  741. - Name: fcos_hrnetv2p-w18-gn-head_4xb4-2x_coco
  742. In Collection: FCOS
  743. Config: configs/hrnet/fcos_hrnetv2p-w18-gn-head_4xb4-2x_coco.py
  744. Metadata:
  745. Training Resources: 4x V100 GPUs
  746. Batch Size: 16
  747. Training Memory (GB): 13.0
  748. inference time (ms/im):
  749. - value: 77.52
  750. hardware: V100
  751. backend: PyTorch
  752. batch size: 1
  753. mode: FP32
  754. resolution: (800, 1333)
  755. Epochs: 24
  756. Training Data: COCO
  757. Training Techniques:
  758. - SGD with Momentum
  759. - Weight Decay
  760. Architecture:
  761. - HRNet
  762. Results:
  763. - Task: Object Detection
  764. Dataset: COCO
  765. Metrics:
  766. box AP: 38.2
  767. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco_20201212_101110-5c575fa5.pth
  768. Paper:
  769. URL: https://arxiv.org/abs/1904.04514
  770. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  771. README: configs/hrnet/README.md
  772. Code:
  773. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  774. Version: v2.0.0
  775. - Name: fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco
  776. In Collection: FCOS
  777. Config: configs/hrnet/fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py
  778. Metadata:
  779. Training Resources: 4x V100 GPUs
  780. Batch Size: 16
  781. Training Memory (GB): 17.5
  782. inference time (ms/im):
  783. - value: 77.52
  784. hardware: V100
  785. backend: PyTorch
  786. batch size: 1
  787. mode: FP32
  788. resolution: (800, 1333)
  789. Epochs: 12
  790. Training Data: COCO
  791. Training Techniques:
  792. - SGD with Momentum
  793. - Weight Decay
  794. Architecture:
  795. - HRNet
  796. Results:
  797. - Task: Object Detection
  798. Dataset: COCO
  799. Metrics:
  800. box AP: 39.5
  801. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco/fcos_hrnetv2p_w32_gn-head_4x4_1x_coco_20201211_134730-cb8055c0.pth
  802. Paper:
  803. URL: https://arxiv.org/abs/1904.04514
  804. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  805. README: configs/hrnet/README.md
  806. Code:
  807. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  808. Version: v2.0.0
  809. - Name: fcos_hrnetv2p-w32-gn-head_4xb4-2x_coco
  810. In Collection: FCOS
  811. Config: configs/hrnet/fcos_hrnetv2p-w32-gn-head_4xb4-2x_coco.py
  812. Metadata:
  813. Training Resources: 4x V100 GPUs
  814. Batch Size: 16
  815. Training Memory (GB): 17.5
  816. inference time (ms/im):
  817. - value: 77.52
  818. hardware: V100
  819. backend: PyTorch
  820. batch size: 1
  821. mode: FP32
  822. resolution: (800, 1333)
  823. Epochs: 24
  824. Training Data: COCO
  825. Training Techniques:
  826. - SGD with Momentum
  827. - Weight Decay
  828. Architecture:
  829. - HRNet
  830. Results:
  831. - Task: Object Detection
  832. Dataset: COCO
  833. Metrics:
  834. box AP: 40.8
  835. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco_20201212_112133-77b6b9bb.pth
  836. Paper:
  837. URL: https://arxiv.org/abs/1904.04514
  838. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  839. README: configs/hrnet/README.md
  840. Code:
  841. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  842. Version: v2.0.0
  843. - Name: fcos_hrnetv2p-w18-gn-head_ms-640-800-4xb4-2x_coco
  844. In Collection: FCOS
  845. Config: configs/hrnet/fcos_hrnetv2p-w18-gn-head_ms-640-800-4xb4-2x_coco.py
  846. Metadata:
  847. Training Resources: 4x V100 GPUs
  848. Batch Size: 16
  849. Training Memory (GB): 13.0
  850. inference time (ms/im):
  851. - value: 77.52
  852. hardware: V100
  853. backend: PyTorch
  854. batch size: 1
  855. mode: FP32
  856. resolution: (800, 1333)
  857. Epochs: 24
  858. Training Data: COCO
  859. Training Techniques:
  860. - SGD with Momentum
  861. - Weight Decay
  862. Architecture:
  863. - HRNet
  864. Results:
  865. - Task: Object Detection
  866. Dataset: COCO
  867. Metrics:
  868. box AP: 38.3
  869. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco_20201212_111651-441e9d9f.pth
  870. Paper:
  871. URL: https://arxiv.org/abs/1904.04514
  872. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  873. README: configs/hrnet/README.md
  874. Code:
  875. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  876. Version: v2.0.0
  877. - Name: fcos_hrnetv2p-w32-gn-head_ms-640-800-4xb4-2x_coco
  878. In Collection: FCOS
  879. Config: configs/hrnet/fcos_hrnetv2p-w32-gn-head_ms-640-800-4xb4-2x_coco.py
  880. Metadata:
  881. Training Resources: 4x V100 GPUs
  882. Batch Size: 16
  883. Training Memory (GB): 17.5
  884. inference time (ms/im):
  885. - value: 80.65
  886. hardware: V100
  887. backend: PyTorch
  888. batch size: 1
  889. mode: FP32
  890. resolution: (800, 1333)
  891. Epochs: 24
  892. Training Data: COCO
  893. Training Techniques:
  894. - SGD with Momentum
  895. - Weight Decay
  896. Architecture:
  897. - HRNet
  898. Results:
  899. - Task: Object Detection
  900. Dataset: COCO
  901. Metrics:
  902. box AP: 41.9
  903. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco_20201212_090846-b6f2b49f.pth
  904. Paper:
  905. URL: https://arxiv.org/abs/1904.04514
  906. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  907. README: configs/hrnet/README.md
  908. Code:
  909. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  910. Version: v2.0.0
  911. - Name: fcos_hrnetv2p-w40-gn-head_ms-640-800-4xb4-2x_coco
  912. In Collection: FCOS
  913. Config: configs/hrnet/fcos_hrnetv2p-w40-gn-head_ms-640-800-4xb4-2x_coco.py
  914. Metadata:
  915. Training Resources: 4x V100 GPUs
  916. Batch Size: 16
  917. Training Memory (GB): 20.3
  918. inference time (ms/im):
  919. - value: 92.59
  920. hardware: V100
  921. backend: PyTorch
  922. batch size: 1
  923. mode: FP32
  924. resolution: (800, 1333)
  925. Epochs: 24
  926. Training Data: COCO
  927. Training Techniques:
  928. - SGD with Momentum
  929. - Weight Decay
  930. Architecture:
  931. - HRNet
  932. Results:
  933. - Task: Object Detection
  934. Dataset: COCO
  935. Metrics:
  936. box AP: 42.7
  937. Weights: https://download.openmmlab.com/mmdetection/v2.0/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco_20201212_124752-f22d2ce5.pth
  938. Paper:
  939. URL: https://arxiv.org/abs/1904.04514
  940. Title: 'Deep High-Resolution Representation Learning for Visual Recognition'
  941. README: configs/hrnet/README.md
  942. Code:
  943. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/backbones/hrnet.py#L195
  944. Version: v2.0.0