fcos_hrnetv2p-w32-gn-head_ms-640-800-4xb4-2x_coco.py 933 B

1234567891011121314151617181920212223242526272829303132333435
  1. _base_ = './fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py'
  2. model = dict(
  3. data_preprocessor=dict(
  4. mean=[103.53, 116.28, 123.675],
  5. std=[57.375, 57.12, 58.395],
  6. bgr_to_rgb=False))
  7. train_pipeline = [
  8. dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
  9. dict(type='LoadAnnotations', with_bbox=True),
  10. dict(
  11. type='RandomChoiceResize',
  12. scales=[(1333, 640), (1333, 800)],
  13. keep_ratio=True),
  14. dict(type='RandomFlip', prob=0.5),
  15. dict(type='PackDetInputs')
  16. ]
  17. train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
  18. # learning policy
  19. max_epochs = 24
  20. train_cfg = dict(max_epochs=max_epochs)
  21. param_scheduler = [
  22. dict(
  23. type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
  24. dict(
  25. type='MultiStepLR',
  26. begin=0,
  27. end=max_epochs,
  28. by_epoch=True,
  29. milestones=[16, 22],
  30. gamma=0.1)
  31. ]