fcos_hrnetv2p-w32-gn-head_4xb4-1x_coco.py 1.3 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243
  1. _base_ = '../fcos/fcos_r50-caffe_fpn_gn-head_4xb4-1x_coco.py'
  2. model = dict(
  3. data_preprocessor=dict(
  4. mean=[103.53, 116.28, 123.675],
  5. std=[57.375, 57.12, 58.395],
  6. bgr_to_rgb=False),
  7. backbone=dict(
  8. _delete_=True,
  9. type='HRNet',
  10. extra=dict(
  11. stage1=dict(
  12. num_modules=1,
  13. num_branches=1,
  14. block='BOTTLENECK',
  15. num_blocks=(4, ),
  16. num_channels=(64, )),
  17. stage2=dict(
  18. num_modules=1,
  19. num_branches=2,
  20. block='BASIC',
  21. num_blocks=(4, 4),
  22. num_channels=(32, 64)),
  23. stage3=dict(
  24. num_modules=4,
  25. num_branches=3,
  26. block='BASIC',
  27. num_blocks=(4, 4, 4),
  28. num_channels=(32, 64, 128)),
  29. stage4=dict(
  30. num_modules=3,
  31. num_branches=4,
  32. block='BASIC',
  33. num_blocks=(4, 4, 4, 4),
  34. num_channels=(32, 64, 128, 256))),
  35. init_cfg=dict(
  36. type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w32')),
  37. neck=dict(
  38. _delete_=True,
  39. type='HRFPN',
  40. in_channels=[32, 64, 128, 256],
  41. out_channels=256,
  42. stride=2,
  43. num_outs=5))