metafile.yml 5.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162
  1. Collections:
  2. - Name: Group Normalization
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Group Normalization
  11. Paper:
  12. URL: https://arxiv.org/abs/1803.08494
  13. Title: 'Group Normalization'
  14. README: configs/gn/README.md
  15. Code:
  16. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/configs/gn/mask-rcnn_r50_fpn_gn-all_2x_coco.py
  17. Version: v2.0.0
  18. Models:
  19. - Name: mask-rcnn_r50_fpn_gn-all_2x_coco
  20. In Collection: Group Normalization
  21. Config: configs/gn/mask-rcnn_r50_fpn_gn-all_2x_coco.py
  22. Metadata:
  23. Training Memory (GB): 7.1
  24. inference time (ms/im):
  25. - value: 90.91
  26. hardware: V100
  27. backend: PyTorch
  28. batch size: 1
  29. mode: FP32
  30. resolution: (800, 1333)
  31. Epochs: 24
  32. Results:
  33. - Task: Object Detection
  34. Dataset: COCO
  35. Metrics:
  36. box AP: 40.2
  37. - Task: Instance Segmentation
  38. Dataset: COCO
  39. Metrics:
  40. mask AP: 36.4
  41. Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_2x_coco/mask_rcnn_r50_fpn_gn-all_2x_coco_20200206-8eee02a6.pth
  42. - Name: mask-rcnn_r50_fpn_gn-all_3x_coco
  43. In Collection: Group Normalization
  44. Config: configs/gn/mask-rcnn_r50_fpn_gn-all_3x_coco.py
  45. Metadata:
  46. Training Memory (GB): 7.1
  47. inference time (ms/im):
  48. - value: 90.91
  49. hardware: V100
  50. backend: PyTorch
  51. batch size: 1
  52. mode: FP32
  53. resolution: (800, 1333)
  54. Epochs: 36
  55. Results:
  56. - Task: Object Detection
  57. Dataset: COCO
  58. Metrics:
  59. box AP: 40.5
  60. - Task: Instance Segmentation
  61. Dataset: COCO
  62. Metrics:
  63. mask AP: 36.7
  64. Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_3x_coco/mask_rcnn_r50_fpn_gn-all_3x_coco_20200214-8b23b1e5.pth
  65. - Name: mask-rcnn_r101_fpn_gn-all_2x_coco
  66. In Collection: Group Normalization
  67. Config: configs/gn/mask-rcnn_r101_fpn_gn-all_2x_coco.py
  68. Metadata:
  69. Training Memory (GB): 9.9
  70. inference time (ms/im):
  71. - value: 111.11
  72. hardware: V100
  73. backend: PyTorch
  74. batch size: 1
  75. mode: FP32
  76. resolution: (800, 1333)
  77. Epochs: 24
  78. Results:
  79. - Task: Object Detection
  80. Dataset: COCO
  81. Metrics:
  82. box AP: 41.9
  83. - Task: Instance Segmentation
  84. Dataset: COCO
  85. Metrics:
  86. mask AP: 37.6
  87. Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_2x_coco/mask_rcnn_r101_fpn_gn-all_2x_coco_20200205-d96b1b50.pth
  88. - Name: mask-rcnn_r101_fpn_gn-all_3x_coco
  89. In Collection: Group Normalization
  90. Config: configs/gn/mask-rcnn_r101_fpn_gn-all_3x_coco.py
  91. Metadata:
  92. Training Memory (GB): 9.9
  93. inference time (ms/im):
  94. - value: 111.11
  95. hardware: V100
  96. backend: PyTorch
  97. batch size: 1
  98. mode: FP32
  99. resolution: (800, 1333)
  100. Epochs: 36
  101. Results:
  102. - Task: Object Detection
  103. Dataset: COCO
  104. Metrics:
  105. box AP: 42.1
  106. - Task: Instance Segmentation
  107. Dataset: COCO
  108. Metrics:
  109. mask AP: 38.0
  110. Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r101_fpn_gn-all_3x_coco/mask_rcnn_r101_fpn_gn-all_3x_coco_20200513_181609-0df864f4.pth
  111. - Name: mask-rcnn_r50_fpn_gn-all_contrib_2x_coco
  112. In Collection: Group Normalization
  113. Config: configs/gn/mask-rcnn_r50-contrib_fpn_gn-all_2x_coco.py
  114. Metadata:
  115. Training Memory (GB): 7.1
  116. inference time (ms/im):
  117. - value: 91.74
  118. hardware: V100
  119. backend: PyTorch
  120. batch size: 1
  121. mode: FP32
  122. resolution: (800, 1333)
  123. Epochs: 24
  124. Results:
  125. - Task: Object Detection
  126. Dataset: COCO
  127. Metrics:
  128. box AP: 40.0
  129. - Task: Instance Segmentation
  130. Dataset: COCO
  131. Metrics:
  132. mask AP: 36.1
  133. Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco/mask_rcnn_r50_fpn_gn-all_contrib_2x_coco_20200207-20d3e849.pth
  134. - Name: mask-rcnn_r50_fpn_gn-all_contrib_3x_coco
  135. In Collection: Group Normalization
  136. Config: configs/gn/mask-rcnn_r50-contrib_fpn_gn-all_3x_coco.py
  137. Metadata:
  138. Training Memory (GB): 7.1
  139. inference time (ms/im):
  140. - value: 91.74
  141. hardware: V100
  142. backend: PyTorch
  143. batch size: 1
  144. mode: FP32
  145. resolution: (800, 1333)
  146. Epochs: 36
  147. Results:
  148. - Task: Object Detection
  149. Dataset: COCO
  150. Metrics:
  151. box AP: 40.1
  152. - Task: Instance Segmentation
  153. Dataset: COCO
  154. Metrics:
  155. mask AP: 36.2
  156. Weights: https://download.openmmlab.com/mmdetection/v2.0/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco_20200225-542aefbc.pth