metafile.yml 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. Collections:
  2. - Name: GHM
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - GHM-C
  11. - GHM-R
  12. - FPN
  13. - ResNet
  14. Paper:
  15. URL: https://arxiv.org/abs/1811.05181
  16. Title: 'Gradient Harmonized Single-stage Detector'
  17. README: configs/ghm/README.md
  18. Code:
  19. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/losses/ghm_loss.py#L21
  20. Version: v2.0.0
  21. Models:
  22. - Name: retinanet_r50_fpn_ghm-1x_coco
  23. In Collection: GHM
  24. Config: configs/ghm/retinanet_r50_fpn_ghm-1x_coco.py
  25. Metadata:
  26. Training Memory (GB): 4.0
  27. inference time (ms/im):
  28. - value: 303.03
  29. hardware: V100
  30. backend: PyTorch
  31. batch size: 1
  32. mode: FP32
  33. resolution: (800, 1333)
  34. Epochs: 12
  35. Results:
  36. - Task: Object Detection
  37. Dataset: COCO
  38. Metrics:
  39. box AP: 37.0
  40. Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r50_fpn_1x_coco/retinanet_ghm_r50_fpn_1x_coco_20200130-a437fda3.pth
  41. - Name: retinanet_r101_fpn_ghm-1x_coco
  42. In Collection: GHM
  43. Config: configs/ghm/retinanet_r101_fpn_ghm-1x_coco.py
  44. Metadata:
  45. Training Memory (GB): 6.0
  46. inference time (ms/im):
  47. - value: 227.27
  48. hardware: V100
  49. backend: PyTorch
  50. batch size: 1
  51. mode: FP32
  52. resolution: (800, 1333)
  53. Epochs: 12
  54. Results:
  55. - Task: Object Detection
  56. Dataset: COCO
  57. Metrics:
  58. box AP: 39.1
  59. Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_r101_fpn_1x_coco/retinanet_ghm_r101_fpn_1x_coco_20200130-c148ee8f.pth
  60. - Name: retinanet_x101-32x4d_fpn_ghm-1x_coco
  61. In Collection: GHM
  62. Config: configs/ghm/retinanet_x101-32x4d_fpn_ghm-1x_coco.py
  63. Metadata:
  64. Training Memory (GB): 7.2
  65. inference time (ms/im):
  66. - value: 196.08
  67. hardware: V100
  68. backend: PyTorch
  69. batch size: 1
  70. mode: FP32
  71. resolution: (800, 1333)
  72. Epochs: 12
  73. Results:
  74. - Task: Object Detection
  75. Dataset: COCO
  76. Metrics:
  77. box AP: 40.7
  78. Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco/retinanet_ghm_x101_32x4d_fpn_1x_coco_20200131-e4333bd0.pth
  79. - Name: retinanet_x101-64x4d_fpn_ghm-1x_coco
  80. In Collection: GHM
  81. Config: configs/ghm/retinanet_x101-64x4d_fpn_ghm-1x_coco.py
  82. Metadata:
  83. Training Memory (GB): 10.3
  84. inference time (ms/im):
  85. - value: 192.31
  86. hardware: V100
  87. backend: PyTorch
  88. batch size: 1
  89. mode: FP32
  90. resolution: (800, 1333)
  91. Epochs: 12
  92. Results:
  93. - Task: Object Detection
  94. Dataset: COCO
  95. Metrics:
  96. box AP: 41.4
  97. Weights: https://download.openmmlab.com/mmdetection/v2.0/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco/retinanet_ghm_x101_64x4d_fpn_1x_coco_20200131-dd381cef.pth