metafile.yml 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. Collections:
  2. - Name: Generalized Focal Loss
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Generalized Focal Loss
  11. - FPN
  12. - ResNet
  13. Paper:
  14. URL: https://arxiv.org/abs/2006.04388
  15. Title: 'Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection'
  16. README: configs/gfl/README.md
  17. Code:
  18. URL: https://github.com/open-mmlab/mmdetection/blob/v2.2.0/mmdet/models/detectors/gfl.py#L6
  19. Version: v2.2.0
  20. Models:
  21. - Name: gfl_r50_fpn_1x_coco
  22. In Collection: Generalized Focal Loss
  23. Config: configs/gfl/gfl_r50_fpn_1x_coco.py
  24. Metadata:
  25. inference time (ms/im):
  26. - value: 51.28
  27. hardware: V100
  28. backend: PyTorch
  29. batch size: 1
  30. mode: FP32
  31. resolution: (800, 1333)
  32. Epochs: 12
  33. Results:
  34. - Task: Object Detection
  35. Dataset: COCO
  36. Metrics:
  37. box AP: 40.2
  38. Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_1x_coco/gfl_r50_fpn_1x_coco_20200629_121244-25944287.pth
  39. - Name: gfl_r50_fpn_ms-2x_coco
  40. In Collection: Generalized Focal Loss
  41. Config: configs/gfl/gfl_r50_fpn_ms-2x_coco.py
  42. Metadata:
  43. inference time (ms/im):
  44. - value: 51.28
  45. hardware: V100
  46. backend: PyTorch
  47. batch size: 1
  48. mode: FP32
  49. resolution: (800, 1333)
  50. Epochs: 24
  51. Results:
  52. - Task: Object Detection
  53. Dataset: COCO
  54. Metrics:
  55. box AP: 42.9
  56. Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r50_fpn_mstrain_2x_coco/gfl_r50_fpn_mstrain_2x_coco_20200629_213802-37bb1edc.pth
  57. - Name: gfl_r101_fpn_ms-2x_coco
  58. In Collection: Generalized Focal Loss
  59. Config: configs/gfl/gfl_r101_fpn_ms-2x_coco.py
  60. Metadata:
  61. inference time (ms/im):
  62. - value: 68.03
  63. hardware: V100
  64. backend: PyTorch
  65. batch size: 1
  66. mode: FP32
  67. resolution: (800, 1333)
  68. Epochs: 24
  69. Results:
  70. - Task: Object Detection
  71. Dataset: COCO
  72. Metrics:
  73. box AP: 44.7
  74. Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_mstrain_2x_coco/gfl_r101_fpn_mstrain_2x_coco_20200629_200126-dd12f847.pth
  75. - Name: gfl_r101-dconv-c3-c5_fpn_ms-2x_coco
  76. In Collection: Generalized Focal Loss
  77. Config: configs/gfl/gfl_r101-dconv-c3-c5_fpn_ms-2x_coco.py
  78. Metadata:
  79. inference time (ms/im):
  80. - value: 77.52
  81. hardware: V100
  82. backend: PyTorch
  83. batch size: 1
  84. mode: FP32
  85. resolution: (800, 1333)
  86. Epochs: 24
  87. Results:
  88. - Task: Object Detection
  89. Dataset: COCO
  90. Metrics:
  91. box AP: 47.1
  92. Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco_20200630_102002-134b07df.pth
  93. - Name: gfl_x101-32x4d_fpn_ms-2x_coco
  94. In Collection: Generalized Focal Loss
  95. Config: configs/gfl/gfl_x101-32x4d_fpn_ms-2x_coco.py
  96. Metadata:
  97. inference time (ms/im):
  98. - value: 82.64
  99. hardware: V100
  100. backend: PyTorch
  101. batch size: 1
  102. mode: FP32
  103. resolution: (800, 1333)
  104. Epochs: 24
  105. Results:
  106. - Task: Object Detection
  107. Dataset: COCO
  108. Metrics:
  109. box AP: 45.9
  110. Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco/gfl_x101_32x4d_fpn_mstrain_2x_coco_20200630_102002-50c1ffdb.pth
  111. - Name: gfl_x101-32x4d-dconv-c4-c5_fpn_ms-2x_coco
  112. In Collection: Generalized Focal Loss
  113. Config: configs/gfl/gfl_x101-32x4d-dconv-c4-c5_fpn_ms-2x_coco.py
  114. Metadata:
  115. inference time (ms/im):
  116. - value: 93.46
  117. hardware: V100
  118. backend: PyTorch
  119. batch size: 1
  120. mode: FP32
  121. resolution: (800, 1333)
  122. Epochs: 24
  123. Results:
  124. - Task: Object Detection
  125. Dataset: COCO
  126. Metrics:
  127. box AP: 48.1
  128. Weights: https://download.openmmlab.com/mmdetection/v2.0/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco_20200630_102002-14a2bf25.pth