metafile.yml 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440
  1. Collections:
  2. - Name: GCNet
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Global Context Block
  11. - FPN
  12. - RPN
  13. - ResNet
  14. - ResNeXt
  15. Paper:
  16. URL: https://arxiv.org/abs/1904.11492
  17. Title: 'GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond'
  18. README: configs/gcnet/README.md
  19. Code:
  20. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/context_block.py#L13
  21. Version: v2.0.0
  22. Models:
  23. - Name: mask-rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco
  24. In Collection: GCNet
  25. Config: configs/gcnet/mask-rcnn_r50-gcb-r16-c3-c5_fpn_1x_coco.py
  26. Metadata:
  27. Training Memory (GB): 5.0
  28. Epochs: 12
  29. Results:
  30. - Task: Object Detection
  31. Dataset: COCO
  32. Metrics:
  33. box AP: 39.7
  34. - Task: Instance Segmentation
  35. Dataset: COCO
  36. Metrics:
  37. mask AP: 35.9
  38. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco_20200515_211915-187da160.pth
  39. - Name: mask-rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco
  40. In Collection: GCNet
  41. Config: configs/gcnet/mask-rcnn_r50-gcb-r4-c3-c5_fpn_1x_coco.py
  42. Metadata:
  43. Training Memory (GB): 5.1
  44. inference time (ms/im):
  45. - value: 66.67
  46. hardware: V100
  47. backend: PyTorch
  48. batch size: 1
  49. mode: FP32
  50. resolution: (800, 1333)
  51. Epochs: 12
  52. Results:
  53. - Task: Object Detection
  54. Dataset: COCO
  55. Metrics:
  56. box AP: 39.9
  57. - Task: Instance Segmentation
  58. Dataset: COCO
  59. Metrics:
  60. mask AP: 36.0
  61. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco_20200204-17235656.pth
  62. - Name: mask-rcnn_r101-gcb-r16-c3-c5_fpn_1x_coco
  63. In Collection: GCNet
  64. Config: configs/gcnet/mask-rcnn_r101-gcb-r16-c3-c5_fpn_1x_coco.py
  65. Metadata:
  66. Training Memory (GB): 7.6
  67. inference time (ms/im):
  68. - value: 87.72
  69. hardware: V100
  70. backend: PyTorch
  71. batch size: 1
  72. mode: FP32
  73. resolution: (800, 1333)
  74. Epochs: 12
  75. Results:
  76. - Task: Object Detection
  77. Dataset: COCO
  78. Metrics:
  79. box AP: 41.3
  80. - Task: Instance Segmentation
  81. Dataset: COCO
  82. Metrics:
  83. mask AP: 37.2
  84. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco_20200205-e58ae947.pth
  85. - Name: mask-rcnn_r101-gcb-r4-c3-c5_fpn_1x_coco
  86. In Collection: GCNet
  87. Config: configs/gcnet/mask-rcnn_r101-gcb-r4-c3-c5_fpn_1x_coco.py
  88. Metadata:
  89. Training Memory (GB): 7.8
  90. inference time (ms/im):
  91. - value: 86.21
  92. hardware: V100
  93. backend: PyTorch
  94. batch size: 1
  95. mode: FP32
  96. resolution: (800, 1333)
  97. Epochs: 12
  98. Results:
  99. - Task: Object Detection
  100. Dataset: COCO
  101. Metrics:
  102. box AP: 42.2
  103. - Task: Instance Segmentation
  104. Dataset: COCO
  105. Metrics:
  106. mask AP: 37.8
  107. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco_20200206-af22dc9d.pth
  108. - Name: mask-rcnn_r50_fpn_syncbn-backbone_1x_coco
  109. In Collection: GCNet
  110. Config: configs/gcnet/mask-rcnn_r50-syncbn_fpn_1x_coco.py
  111. Metadata:
  112. Training Memory (GB): 4.4
  113. inference time (ms/im):
  114. - value: 60.24
  115. hardware: V100
  116. backend: PyTorch
  117. batch size: 1
  118. mode: FP32
  119. resolution: (800, 1333)
  120. Epochs: 12
  121. Results:
  122. - Task: Object Detection
  123. Dataset: COCO
  124. Metrics:
  125. box AP: 38.4
  126. - Task: Instance Segmentation
  127. Dataset: COCO
  128. Metrics:
  129. mask AP: 34.6
  130. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco_20200202-bb3eb55c.pth
  131. - Name: mask-rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco
  132. In Collection: GCNet
  133. Config: configs/gcnet/mask-rcnn_r50-syncbn-gcb-r16-c3-c5_fpn_1x_coco.py
  134. Metadata:
  135. Training Memory (GB): 5.0
  136. inference time (ms/im):
  137. - value: 64.52
  138. hardware: V100
  139. backend: PyTorch
  140. batch size: 1
  141. mode: FP32
  142. resolution: (800, 1333)
  143. Epochs: 12
  144. Results:
  145. - Task: Object Detection
  146. Dataset: COCO
  147. Metrics:
  148. box AP: 40.4
  149. - Task: Instance Segmentation
  150. Dataset: COCO
  151. Metrics:
  152. mask AP: 36.2
  153. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200202-587b99aa.pth
  154. - Name: mask-rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco
  155. In Collection: GCNet
  156. Config: configs/gcnet/mask-rcnn_r50-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py
  157. Metadata:
  158. Training Memory (GB): 5.1
  159. inference time (ms/im):
  160. - value: 66.23
  161. hardware: V100
  162. backend: PyTorch
  163. batch size: 1
  164. mode: FP32
  165. resolution: (800, 1333)
  166. Epochs: 12
  167. Results:
  168. - Task: Object Detection
  169. Dataset: COCO
  170. Metrics:
  171. box AP: 40.7
  172. - Task: Instance Segmentation
  173. Dataset: COCO
  174. Metrics:
  175. mask AP: 36.5
  176. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200202-50b90e5c.pth
  177. - Name: mask-rcnn_r101-syncbn_fpn_1x_coco
  178. In Collection: GCNet
  179. Config: configs/gcnet/mask-rcnn_r101-syncbn_fpn_1x_coco.py
  180. Metadata:
  181. Training Memory (GB): 6.4
  182. inference time (ms/im):
  183. - value: 75.19
  184. hardware: V100
  185. backend: PyTorch
  186. batch size: 1
  187. mode: FP32
  188. resolution: (800, 1333)
  189. Epochs: 12
  190. Results:
  191. - Task: Object Detection
  192. Dataset: COCO
  193. Metrics:
  194. box AP: 40.5
  195. - Task: Instance Segmentation
  196. Dataset: COCO
  197. Metrics:
  198. mask AP: 36.3
  199. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco_20200210-81658c8a.pth
  200. - Name: mask-rcnn_r101-syncbn-gcb-r16-c3-c5_fpn_1x_coco
  201. In Collection: GCNet
  202. Config: configs/gcnet/mask-rcnn_r101-syncbn-gcb-r16-c3-c5_fpn_1x_coco.py
  203. Metadata:
  204. Training Memory (GB): 7.6
  205. inference time (ms/im):
  206. - value: 83.33
  207. hardware: V100
  208. backend: PyTorch
  209. batch size: 1
  210. mode: FP32
  211. resolution: (800, 1333)
  212. Epochs: 12
  213. Results:
  214. - Task: Object Detection
  215. Dataset: COCO
  216. Metrics:
  217. box AP: 42.2
  218. - Task: Instance Segmentation
  219. Dataset: COCO
  220. Metrics:
  221. mask AP: 37.8
  222. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200207-945e77ca.pth
  223. - Name: mask-rcnn_r101-syncbn-gcb-r4-c3-c5_fpn_1x_coco
  224. In Collection: GCNet
  225. Config: configs/gcnet/mask-rcnn_r101-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py
  226. Metadata:
  227. Training Memory (GB): 7.8
  228. inference time (ms/im):
  229. - value: 84.75
  230. hardware: V100
  231. backend: PyTorch
  232. batch size: 1
  233. mode: FP32
  234. resolution: (800, 1333)
  235. Epochs: 12
  236. Results:
  237. - Task: Object Detection
  238. Dataset: COCO
  239. Metrics:
  240. box AP: 42.2
  241. - Task: Instance Segmentation
  242. Dataset: COCO
  243. Metrics:
  244. mask AP: 37.8
  245. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200206-8407a3f0.pth
  246. - Name: mask-rcnn_x101-32x4d-syncbn_fpn_1x_coco
  247. In Collection: GCNet
  248. Config: configs/gcnet/mask-rcnn_x101-32x4d-syncbn_fpn_1x_coco.py
  249. Metadata:
  250. Training Memory (GB): 7.6
  251. inference time (ms/im):
  252. - value: 88.5
  253. hardware: V100
  254. backend: PyTorch
  255. batch size: 1
  256. mode: FP32
  257. resolution: (800, 1333)
  258. Epochs: 12
  259. Results:
  260. - Task: Object Detection
  261. Dataset: COCO
  262. Metrics:
  263. box AP: 42.4
  264. - Task: Instance Segmentation
  265. Dataset: COCO
  266. Metrics:
  267. mask AP: 37.7
  268. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco_20200211-7584841c.pth
  269. - Name: mask-rcnn_x101-32x4d-syncbn-gcb-r16-c3-c5_fpn_1x_coco
  270. In Collection: GCNet
  271. Config: configs/gcnet/mask-rcnn_x101-32x4d-syncbn-gcb-r16-c3-c5_fpn_1x_coco.py
  272. Metadata:
  273. Training Memory (GB): 8.8
  274. inference time (ms/im):
  275. - value: 102.04
  276. hardware: V100
  277. backend: PyTorch
  278. batch size: 1
  279. mode: FP32
  280. resolution: (800, 1333)
  281. Epochs: 12
  282. Results:
  283. - Task: Object Detection
  284. Dataset: COCO
  285. Metrics:
  286. box AP: 43.5
  287. - Task: Instance Segmentation
  288. Dataset: COCO
  289. Metrics:
  290. mask AP: 38.6
  291. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200211-cbed3d2c.pth
  292. - Name: mask-rcnn_x101-32x4d-syncbn-gcb-r4-c3-c5_fpn_1x_coco
  293. In Collection: GCNet
  294. Config: configs/gcnet/mask-rcnn_x101-32x4d-syncbn-gcb-r4-c3-c5_fpn_1x_coco.py
  295. Metadata:
  296. Training Memory (GB): 9.0
  297. inference time (ms/im):
  298. - value: 103.09
  299. hardware: V100
  300. backend: PyTorch
  301. batch size: 1
  302. mode: FP32
  303. resolution: (800, 1333)
  304. Epochs: 12
  305. Results:
  306. - Task: Object Detection
  307. Dataset: COCO
  308. Metrics:
  309. box AP: 43.9
  310. - Task: Instance Segmentation
  311. Dataset: COCO
  312. Metrics:
  313. mask AP: 39.0
  314. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200212-68164964.pth
  315. - Name: cascade-mask-rcnn_x101-32x4d-syncbn_fpn_1x_coco
  316. In Collection: GCNet
  317. Config: configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn_fpn_1x_coco.py
  318. Metadata:
  319. Training Memory (GB): 9.2
  320. inference time (ms/im):
  321. - value: 119.05
  322. hardware: V100
  323. backend: PyTorch
  324. batch size: 1
  325. mode: FP32
  326. resolution: (800, 1333)
  327. Epochs: 12
  328. Results:
  329. - Task: Object Detection
  330. Dataset: COCO
  331. Metrics:
  332. box AP: 44.7
  333. - Task: Instance Segmentation
  334. Dataset: COCO
  335. Metrics:
  336. mask AP: 38.6
  337. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco_20200310-d5ad2a5e.pth
  338. - Name: cascade-mask-rcnn_x101-32x4d-syncbn-r16-gcb-c3-c5_fpn_1x_coco
  339. In Collection: GCNet
  340. Config: configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn-r16-gcb-c3-c5_fpn_1x_coco.py
  341. Metadata:
  342. Training Memory (GB): 10.3
  343. inference time (ms/im):
  344. - value: 129.87
  345. hardware: V100
  346. backend: PyTorch
  347. batch size: 1
  348. mode: FP32
  349. resolution: (800, 1333)
  350. Epochs: 12
  351. Results:
  352. - Task: Object Detection
  353. Dataset: COCO
  354. Metrics:
  355. box AP: 46.2
  356. - Task: Instance Segmentation
  357. Dataset: COCO
  358. Metrics:
  359. mask AP: 39.7
  360. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco_20200211-10bf2463.pth
  361. - Name: cascade-mask-rcnn_x101-32x4d-syncbn-r4-gcb-c3-c5_fpn_1x_coco
  362. In Collection: GCNet
  363. Config: configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn-r4-gcb-c3-c5_fpn_1x_coco.py
  364. Metadata:
  365. Training Memory (GB): 10.6
  366. Epochs: 12
  367. Results:
  368. - Task: Object Detection
  369. Dataset: COCO
  370. Metrics:
  371. box AP: 46.4
  372. - Task: Instance Segmentation
  373. Dataset: COCO
  374. Metrics:
  375. mask AP: 40.1
  376. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco_20200703_180653-ed035291.pth
  377. - Name: cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5_fpn_1x_coco
  378. In Collection: GCNet
  379. Config: configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5_fpn_1x_coco.py
  380. Metadata:
  381. Epochs: 12
  382. Results:
  383. - Task: Object Detection
  384. Dataset: COCO
  385. Metrics:
  386. box AP: 47.5
  387. - Task: Instance Segmentation
  388. Dataset: COCO
  389. Metrics:
  390. mask AP: 40.9
  391. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco_20210615_211019-abbc39ea.pth
  392. - Name: cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5-r16-gcb-c3-c5_fpn_1x_coco
  393. In Collection: GCNet
  394. Config: configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5-r16-gcb-c3-c5_fpn_1x_coco.py
  395. Metadata:
  396. Epochs: 12
  397. Results:
  398. - Task: Object Detection
  399. Dataset: COCO
  400. Metrics:
  401. box AP: 48.0
  402. - Task: Instance Segmentation
  403. Dataset: COCO
  404. Metrics:
  405. mask AP: 41.3
  406. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco_20210615_215648-44aa598a.pth
  407. - Name: cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5-r4-gcb-c3-c5_fpn_1x_coco
  408. In Collection: GCNet
  409. Config: configs/gcnet/cascade-mask-rcnn_x101-32x4d-syncbn-dconv-c3-c5-r4-gcb-c3-c5_fpn_1x_coco.py
  410. Metadata:
  411. Epochs: 12
  412. Results:
  413. - Task: Object Detection
  414. Dataset: COCO
  415. Metrics:
  416. box AP: 47.9
  417. - Task: Instance Segmentation
  418. Dataset: COCO
  419. Metrics:
  420. mask AP: 41.1
  421. Weights: https://download.openmmlab.com/mmdetection/v2.0/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco_20210615_161851-720338ec.pth