metafile.yml 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. Collections:
  2. - Name: Feature Pyramid Grids
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Feature Pyramid Grids
  11. Paper:
  12. URL: https://arxiv.org/abs/2004.03580
  13. Title: 'Feature Pyramid Grids'
  14. README: configs/fpg/README.md
  15. Code:
  16. URL: https://github.com/open-mmlab/mmdetection/blob/v2.10.0/mmdet/models/necks/fpg.py#L101
  17. Version: v2.10.0
  18. Models:
  19. - Name: faster-rcnn_r50_fpg_crop640-50e_coco
  20. In Collection: Feature Pyramid Grids
  21. Config: configs/fpg/faster-rcnn_r50_fpg_crop640-50e_coco.py
  22. Metadata:
  23. Training Memory (GB): 20.0
  24. Epochs: 50
  25. Results:
  26. - Task: Object Detection
  27. Dataset: COCO
  28. Metrics:
  29. box AP: 42.3
  30. Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg_crop640_50e_coco/faster_rcnn_r50_fpg_crop640_50e_coco_20220311_011856-74109f42.pth
  31. - Name: faster-rcnn_r50_fpg-chn128_crop640-50e_coco
  32. In Collection: Feature Pyramid Grids
  33. Config: configs/fpg/faster-rcnn_r50_fpg-chn128_crop640-50e_coco.py
  34. Metadata:
  35. Training Memory (GB): 11.9
  36. Epochs: 50
  37. Results:
  38. - Task: Object Detection
  39. Dataset: COCO
  40. Metrics:
  41. box AP: 41.2
  42. Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco/faster_rcnn_r50_fpg-chn128_crop640_50e_coco_20220311_011857-9376aa9d.pth
  43. - Name: mask-rcnn_r50_fpg_crop640-50e_coco
  44. In Collection: Feature Pyramid Grids
  45. Config: configs/fpg/mask-rcnn_r50_fpg_crop640-50e_coco.py
  46. Metadata:
  47. Training Memory (GB): 23.2
  48. Epochs: 50
  49. Results:
  50. - Task: Object Detection
  51. Dataset: COCO
  52. Metrics:
  53. box AP: 43.0
  54. - Task: Instance Segmentation
  55. Dataset: COCO
  56. Metrics:
  57. mask AP: 38.1
  58. Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg_crop640_50e_coco/mask_rcnn_r50_fpg_crop640_50e_coco_20220311_011857-233b8334.pth
  59. - Name: mask-rcnn_r50_fpg-chn128_crop640-50e_coco
  60. In Collection: Feature Pyramid Grids
  61. Config: configs/fpg/mask-rcnn_r50_fpg-chn128_crop640-50e_coco.py
  62. Metadata:
  63. Training Memory (GB): 15.3
  64. Epochs: 50
  65. Results:
  66. - Task: Object Detection
  67. Dataset: COCO
  68. Metrics:
  69. box AP: 41.7
  70. - Task: Instance Segmentation
  71. Dataset: COCO
  72. Metrics:
  73. mask AP: 37.1
  74. Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco/mask_rcnn_r50_fpg-chn128_crop640_50e_coco_20220311_011859-043c9b4e.pth
  75. - Name: retinanet_r50_fpg_crop640_50e_coco
  76. In Collection: Feature Pyramid Grids
  77. Config: configs/fpg/retinanet_r50_fpg_crop640_50e_coco.py
  78. Metadata:
  79. Training Memory (GB): 20.8
  80. Epochs: 50
  81. Results:
  82. - Task: Object Detection
  83. Dataset: COCO
  84. Metrics:
  85. box AP: 40.5
  86. Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg_crop640_50e_coco/retinanet_r50_fpg_crop640_50e_coco_20220311_110809-b0bcf5f4.pth
  87. - Name: retinanet_r50_fpg-chn128_crop640_50e_coco
  88. In Collection: Feature Pyramid Grids
  89. Config: configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py
  90. Metadata:
  91. Training Memory (GB): 19.9
  92. Epochs: 50
  93. Results:
  94. - Task: Object Detection
  95. Dataset: COCO
  96. Metrics:
  97. box AP: 39.9
  98. Weights: https://download.openmmlab.com/mmdetection/v2.0/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco/retinanet_r50_fpg-chn128_crop640_50e_coco_20220313_104829-ee99a686.pth