12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879 |
- _base_ = [
- '../_base_/models/mask-rcnn_r50_fpn.py',
- '../_base_/datasets/coco_instance.py',
- '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
- ]
- norm_cfg = dict(type='BN', requires_grad=True)
- image_size = (640, 640)
- batch_augments = [dict(type='BatchFixedSizePad', size=image_size)]
- model = dict(
- data_preprocessor=dict(pad_size_divisor=64, batch_augments=batch_augments),
- backbone=dict(norm_cfg=norm_cfg, norm_eval=False),
- neck=dict(
- type='FPN',
- in_channels=[256, 512, 1024, 2048],
- out_channels=256,
- norm_cfg=norm_cfg,
- num_outs=5),
- roi_head=dict(
- bbox_head=dict(norm_cfg=norm_cfg), mask_head=dict(norm_cfg=norm_cfg)))
- dataset_type = 'CocoDataset'
- data_root = 'data/coco/'
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
- dict(
- type='RandomResize',
- scale=image_size,
- ratio_range=(0.8, 1.2),
- keep_ratio=True),
- dict(
- type='RandomCrop',
- crop_type='absolute_range',
- crop_size=image_size,
- allow_negative_crop=True),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='Resize', scale=image_size, keep_ratio=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline))
- val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
- test_dataloader = val_dataloader
- # learning policy
- max_epochs = 50
- train_cfg = dict(max_epochs=max_epochs, val_interval=2)
- param_scheduler = [
- dict(type='LinearLR', start_factor=0.1, by_epoch=False, begin=0, end=1000),
- dict(
- type='MultiStepLR',
- begin=0,
- end=max_epochs,
- by_epoch=True,
- milestones=[30, 40],
- gamma=0.1)
- ]
- # optimizer
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001),
- paramwise_cfg=dict(norm_decay_mult=0, bypass_duplicate=True),
- clip_grad=None)
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (8 samples per GPU)
- auto_scale_lr = dict(base_batch_size=64)
|