12345678910111213141516171819202122232425262728293031 |
- _base_ = './faster-rcnn_r50_fpn_1x_coco.py'
- model = dict(
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[103.530, 116.280, 123.675],
- std=[1.0, 1.0, 1.0],
- bgr_to_rgb=False,
- pad_size_divisor=32),
- backbone=dict(
- norm_cfg=dict(requires_grad=False),
- norm_eval=True,
- style='caffe',
- init_cfg=dict(
- type='Pretrained',
- checkpoint='open-mmlab://detectron2/resnet50_caffe')))
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='RandomChoiceResize',
- scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736), (1333, 768),
- (1333, 800)],
- keep_ratio=True),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PackDetInputs')
- ]
- # MMEngine support the following two ways, users can choose
- # according to convenience
- # train_dataloader = dict(dataset=dict(pipeline=train_pipeline))
- _base_.train_dataloader.dataset.pipeline = train_pipeline
|