metafile.yml 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103
  1. Collections:
  2. - Name: Empirical Attention
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Deformable Convolution
  11. - FPN
  12. - RPN
  13. - ResNet
  14. - RoIAlign
  15. - Spatial Attention
  16. Paper:
  17. URL: https://arxiv.org/pdf/1904.05873
  18. Title: 'An Empirical Study of Spatial Attention Mechanisms in Deep Networks'
  19. README: configs/empirical_attention/README.md
  20. Code:
  21. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/generalized_attention.py#L10
  22. Version: v2.0.0
  23. Models:
  24. - Name: faster-rcnn_r50_fpn_attention_1111_1x_coco
  25. In Collection: Empirical Attention
  26. Config: configs/empirical_attention/faster-rcnn_r50-attn1111_fpn_1x_coco.py
  27. Metadata:
  28. Training Memory (GB): 8.0
  29. inference time (ms/im):
  30. - value: 72.46
  31. hardware: V100
  32. backend: PyTorch
  33. batch size: 1
  34. mode: FP32
  35. resolution: (800, 1333)
  36. Epochs: 12
  37. Results:
  38. - Task: Object Detection
  39. Dataset: COCO
  40. Metrics:
  41. box AP: 40.0
  42. Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco/faster_rcnn_r50_fpn_attention_1111_1x_coco_20200130-403cccba.pth
  43. - Name: faster-rcnn_r50_fpn_attention_0010_1x_coco
  44. In Collection: Empirical Attention
  45. Config: configs/empirical_attention/faster-rcnn_r50-attn0010_fpn_1x_coco.py
  46. Metadata:
  47. Training Memory (GB): 4.2
  48. inference time (ms/im):
  49. - value: 54.35
  50. hardware: V100
  51. backend: PyTorch
  52. batch size: 1
  53. mode: FP32
  54. resolution: (800, 1333)
  55. Epochs: 12
  56. Results:
  57. - Task: Object Detection
  58. Dataset: COCO
  59. Metrics:
  60. box AP: 39.1
  61. Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco/faster_rcnn_r50_fpn_attention_0010_1x_coco_20200130-7cb0c14d.pth
  62. - Name: faster-rcnn_r50_fpn_attention_1111_dcn_1x_coco
  63. In Collection: Empirical Attention
  64. Config: configs/empirical_attention/faster-rcnn_r50-attn1111-dcn_fpn_1x_coco.py
  65. Metadata:
  66. Training Memory (GB): 8.0
  67. inference time (ms/im):
  68. - value: 78.74
  69. hardware: V100
  70. backend: PyTorch
  71. batch size: 1
  72. mode: FP32
  73. resolution: (800, 1333)
  74. Epochs: 12
  75. Results:
  76. - Task: Object Detection
  77. Dataset: COCO
  78. Metrics:
  79. box AP: 42.1
  80. Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco_20200130-8b2523a6.pth
  81. - Name: faster-rcnn_r50_fpn_attention_0010_dcn_1x_coco
  82. In Collection: Empirical Attention
  83. Config: configs/empirical_attention/faster-rcnn_r50-attn0010-dcn_fpn_1x_coco.py
  84. Metadata:
  85. Training Memory (GB): 4.2
  86. inference time (ms/im):
  87. - value: 58.48
  88. hardware: V100
  89. backend: PyTorch
  90. batch size: 1
  91. mode: FP32
  92. resolution: (800, 1333)
  93. Epochs: 12
  94. Results:
  95. - Task: Object Detection
  96. Dataset: COCO
  97. Metrics:
  98. box AP: 42.0
  99. Weights: https://download.openmmlab.com/mmdetection/v2.0/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco_20200130-1a2e831d.pth