1234567891011121314151617181920212223242526272829303132333435363738394041 |
- Collections:
- - Name: Rethinking Classification and Localization for Object Detection
- Metadata:
- Training Data: COCO
- Training Techniques:
- - SGD with Momentum
- - Weight Decay
- Training Resources: 8x V100 GPUs
- Architecture:
- - FPN
- - RPN
- - ResNet
- - RoIAlign
- Paper:
- URL: https://arxiv.org/pdf/1904.06493
- Title: 'Rethinking Classification and Localization for Object Detection'
- README: configs/double_heads/README.md
- Code:
- URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/models/roi_heads/double_roi_head.py#L6
- Version: v2.0.0
- Models:
- - Name: dh-faster-rcnn_r50_fpn_1x_coco
- In Collection: Rethinking Classification and Localization for Object Detection
- Config: configs/double_heads/dh-faster-rcnn_r50_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 6.8
- inference time (ms/im):
- - value: 105.26
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 40.0
- Weights: https://download.openmmlab.com/mmdetection/v2.0/double_heads/dh_faster_rcnn_r50_fpn_1x_coco/dh_faster_rcnn_r50_fpn_1x_coco_20200130-586b67df.pth
|