metafile.yml 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. Collections:
  2. - Name: Deformable Convolutional Networks v2
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Deformable Convolution
  11. Paper:
  12. URL: https://arxiv.org/abs/1811.11168
  13. Title: "Deformable ConvNets v2: More Deformable, Better Results"
  14. README: configs/dcnv2/README.md
  15. Code:
  16. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/dcn/deform_conv.py#L15
  17. Version: v2.0.0
  18. Models:
  19. - Name: faster-rcnn_r50_fpn_mdconv_c3-c5_1x_coco
  20. In Collection: Deformable Convolutional Networks v2
  21. Config: configs/dcnv2/faster-rcnn_r50-mdconv-c3-c5_fpn_1x_coco.py
  22. Metadata:
  23. Training Memory (GB): 4.1
  24. inference time (ms/im):
  25. - value: 56.82
  26. hardware: V100
  27. backend: PyTorch
  28. batch size: 1
  29. mode: FP32
  30. resolution: (800, 1333)
  31. Epochs: 12
  32. Results:
  33. - Task: Object Detection
  34. Dataset: COCO
  35. Metrics:
  36. box AP: 41.4
  37. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200130-d099253b.pth
  38. - Name: faster-rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco
  39. In Collection: Deformable Convolutional Networks v2
  40. Config: configs/dcnv2/faster-rcnn_r50-mdconv-group4-c3-c5_fpn_1x_coco.py
  41. Metadata:
  42. Training Memory (GB): 4.2
  43. inference time (ms/im):
  44. - value: 57.47
  45. hardware: V100
  46. backend: PyTorch
  47. batch size: 1
  48. mode: FP32
  49. resolution: (800, 1333)
  50. Epochs: 12
  51. Results:
  52. - Task: Object Detection
  53. Dataset: COCO
  54. Metrics:
  55. box AP: 41.5
  56. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco_20200130-01262257.pth
  57. - Name: faster-rcnn_r50_fpn_mdpool_1x_coco
  58. In Collection: Deformable Convolutional Networks v2
  59. Config: configs/dcnv2/faster-rcnn_r50_fpn_mdpool_1x_coco.py
  60. Metadata:
  61. Training Memory (GB): 5.8
  62. inference time (ms/im):
  63. - value: 60.24
  64. hardware: V100
  65. backend: PyTorch
  66. batch size: 1
  67. mode: FP32
  68. resolution: (800, 1333)
  69. Epochs: 12
  70. Results:
  71. - Task: Object Detection
  72. Dataset: COCO
  73. Metrics:
  74. box AP: 38.7
  75. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_mdpool_1x_coco/faster_rcnn_r50_fpn_mdpool_1x_coco_20200307-c0df27ff.pth
  76. - Name: mask-rcnn_r50_fpn_mdconv_c3-c5_1x_coco
  77. In Collection: Deformable Convolutional Networks v2
  78. Config: configs/dcnv2/mask-rcnn_r50-mdconv-c3-c5_fpn_1x_coco.py
  79. Metadata:
  80. Training Memory (GB): 4.5
  81. inference time (ms/im):
  82. - value: 66.23
  83. hardware: V100
  84. backend: PyTorch
  85. batch size: 1
  86. mode: FP32
  87. resolution: (800, 1333)
  88. Epochs: 12
  89. Results:
  90. - Task: Object Detection
  91. Dataset: COCO
  92. Metrics:
  93. box AP: 41.5
  94. - Task: Instance Segmentation
  95. Dataset: COCO
  96. Metrics:
  97. mask AP: 37.1
  98. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco_20200203-ad97591f.pth
  99. - Name: mask-rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco
  100. In Collection: Deformable Convolutional Networks v2
  101. Config: configs/dcnv2/mask-rcnn_r50-mdconv-c3-c5_fpn_amp-1x_coco.py
  102. Metadata:
  103. Training Memory (GB): 3.1
  104. Training Techniques:
  105. - SGD with Momentum
  106. - Weight Decay
  107. - Mixed Precision Training
  108. Epochs: 12
  109. Results:
  110. - Task: Object Detection
  111. Dataset: COCO
  112. Metrics:
  113. box AP: 42.0
  114. - Task: Instance Segmentation
  115. Dataset: COCO
  116. Metrics:
  117. mask AP: 37.6
  118. Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco_20210520_180434-cf8fefa5.pth