DJW c16313bb6a 第一次提交 10 місяців тому
..
README.md c16313bb6a 第一次提交 10 місяців тому
cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
cascade-mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
cascade-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
faster-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
faster-rcnn_r50_fpn_dpool_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py c16313bb6a 第一次提交 10 місяців тому
mask-rcnn_r50-dconv-c3-c5_fpn_amp-1x_coco.py c16313bb6a 第一次提交 10 місяців тому
metafile.yml c16313bb6a 第一次提交 10 місяців тому

README.md

DCN

Deformable Convolutional Networks

Abstract

Convolutional neural networks (CNNs) are inherently limited to model geometric transformations due to the fixed geometric structures in its building modules. In this work, we introduce two new modules to enhance the transformation modeling capacity of CNNs, namely, deformable convolution and deformable RoI pooling. Both are based on the idea of augmenting the spatial sampling locations in the modules with additional offsets and learning the offsets from target tasks, without additional supervision. The new modules can readily replace their plain counterparts in existing CNNs and can be easily trained end-to-end by standard back-propagation, giving rise to deformable convolutional networks. Extensive experiments validate the effectiveness of our approach on sophisticated vision tasks of object detection and semantic segmentation.

Results and Models

Backbone Model Style Conv Pool Lr schd Mem (GB) Inf time (fps) box AP mask AP Config Download
R-50-FPN Faster pytorch dconv(c3-c5) - 1x 4.0 17.8 41.3 config model | log
R-50-FPN Faster pytorch - dpool 1x 5.0 17.2 38.9 config model | log
R-101-FPN Faster pytorch dconv(c3-c5) - 1x 6.0 12.5 42.7 config model | log
X-101-32x4d-FPN Faster pytorch dconv(c3-c5) - 1x 7.3 10.0 44.5 config model | log
R-50-FPN Mask pytorch dconv(c3-c5) - 1x 4.5 15.4 41.8 37.4 config model | log
R-101-FPN Mask pytorch dconv(c3-c5) - 1x 6.5 11.7 43.5 38.9 config model | log
R-50-FPN Cascade pytorch dconv(c3-c5) - 1x 4.5 14.6 43.8 config model | log
R-101-FPN Cascade pytorch dconv(c3-c5) - 1x 6.4 11.0 45.0 config model | log
R-50-FPN Cascade Mask pytorch dconv(c3-c5) - 1x 6.0 10.0 44.4 38.6 config model | log
R-101-FPN Cascade Mask pytorch dconv(c3-c5) - 1x 8.0 8.6 45.8 39.7 config model | log
X-101-32x4d-FPN Cascade Mask pytorch dconv(c3-c5) - 1x 9.2 47.3 41.1 config model | log
R-50-FPN (FP16) Mask pytorch dconv(c3-c5) - 1x 3.0 41.9 37.5 config model | log

Notes:

  • dconv denotes deformable convolution, c3-c5 means adding dconv in resnet stage 3 to 5. dpool denotes deformable roi pooling.
  • The dcn ops are modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch, which should be more memory efficient and slightly faster.
  • (*) For R-50-FPN (dg=4), dg is short for deformable_group. This model is trained and tested on Amazon EC2 p3dn.24xlarge instance.
  • Memory, Train/Inf time is outdated.

Citation

@inproceedings{dai2017deformable,
  title={Deformable Convolutional Networks},
  author={Dai, Jifeng and Qi, Haozhi and Xiong, Yuwen and Li, Yi and Zhang, Guodong and Hu, Han and Wei, Yichen},
  booktitle={Proceedings of the IEEE international conference on computer vision},
  year={2017}
}