123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- Collections:
- - Name: Deformable Convolutional Networks
- Metadata:
- Training Data: COCO
- Training Techniques:
- - SGD with Momentum
- - Weight Decay
- Training Resources: 8x V100 GPUs
- Architecture:
- - Deformable Convolution
- Paper:
- URL: https://arxiv.org/abs/1703.06211
- Title: "Deformable Convolutional Networks"
- README: configs/dcn/README.md
- Code:
- URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/dcn/deform_conv.py#L15
- Version: v2.0.0
- Models:
- - Name: faster-rcnn_r50_fpn_dconv_c3-c5_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/faster-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 4.0
- inference time (ms/im):
- - value: 56.18
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 41.3
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-d68aed1e.pth
- - Name: faster-rcnn_r50_fpn_dpool_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/faster-rcnn_r50_fpn_dpool_1x_coco.py
- Metadata:
- Training Memory (GB): 5.0
- inference time (ms/im):
- - value: 58.14
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 38.9
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dpool_1x_coco/faster_rcnn_r50_fpn_dpool_1x_coco_20200307-90d3c01d.pth
- - Name: faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 6.0
- inference time (ms/im):
- - value: 80
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 42.7
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-1377f13d.pth
- - Name: faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 7.3
- inference time (ms/im):
- - value: 100
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 44.5
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco_20200203-4f85c69c.pth
- - Name: mask-rcnn_r50_fpn_dconv_c3-c5_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 4.5
- inference time (ms/im):
- - value: 64.94
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 41.8
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 37.4
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200203-4d9ad43b.pth
- - Name: mask-rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_amp-1x_coco.py
- Metadata:
- Training Techniques:
- - SGD with Momentum
- - Weight Decay
- - Mixed Precision Training
- Training Memory (GB): 3.0
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 41.9
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 37.5
- Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247-c06429d2.pth
- - Name: mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 6.5
- inference time (ms/im):
- - value: 85.47
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 43.5
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 38.9
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200216-a71f5bce.pth
- - Name: cascade-rcnn_r50_fpn_dconv_c3-c5_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/cascade-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 4.5
- inference time (ms/im):
- - value: 68.49
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 43.8
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-2f1fca44.pth
- - Name: cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 6.4
- inference time (ms/im):
- - value: 90.91
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 45.0
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-3b2f0594.pth
- - Name: cascade-mask-rcnn_r50_fpn_dconv_c3-c5_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/cascade-mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 6.0
- inference time (ms/im):
- - value: 100
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 44.4
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 38.6
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200202-42e767a2.pth
- - Name: cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 8.0
- inference time (ms/im):
- - value: 116.28
- hardware: V100
- backend: PyTorch
- batch size: 1
- mode: FP32
- resolution: (800, 1333)
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 45.8
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 39.7
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200204-df0c5f10.pth
- - Name: cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco
- In Collection: Deformable Convolutional Networks
- Config: configs/dcn/cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py
- Metadata:
- Training Memory (GB): 9.2
- Epochs: 12
- Results:
- - Task: Object Detection
- Dataset: COCO
- Metrics:
- box AP: 47.3
- - Task: Instance Segmentation
- Dataset: COCO
- Metrics:
- mask AP: 41.1
- Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco-e75f90c8.pth
|