metafile.yml 9.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. Collections:
  2. - Name: Deformable Convolutional Networks
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x V100 GPUs
  9. Architecture:
  10. - Deformable Convolution
  11. Paper:
  12. URL: https://arxiv.org/abs/1703.06211
  13. Title: "Deformable Convolutional Networks"
  14. README: configs/dcn/README.md
  15. Code:
  16. URL: https://github.com/open-mmlab/mmdetection/blob/v2.0.0/mmdet/ops/dcn/deform_conv.py#L15
  17. Version: v2.0.0
  18. Models:
  19. - Name: faster-rcnn_r50_fpn_dconv_c3-c5_1x_coco
  20. In Collection: Deformable Convolutional Networks
  21. Config: configs/dcn/faster-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
  22. Metadata:
  23. Training Memory (GB): 4.0
  24. inference time (ms/im):
  25. - value: 56.18
  26. hardware: V100
  27. backend: PyTorch
  28. batch size: 1
  29. mode: FP32
  30. resolution: (800, 1333)
  31. Epochs: 12
  32. Results:
  33. - Task: Object Detection
  34. Dataset: COCO
  35. Metrics:
  36. box AP: 41.3
  37. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-d68aed1e.pth
  38. - Name: faster-rcnn_r50_fpn_dpool_1x_coco
  39. In Collection: Deformable Convolutional Networks
  40. Config: configs/dcn/faster-rcnn_r50_fpn_dpool_1x_coco.py
  41. Metadata:
  42. Training Memory (GB): 5.0
  43. inference time (ms/im):
  44. - value: 58.14
  45. hardware: V100
  46. backend: PyTorch
  47. batch size: 1
  48. mode: FP32
  49. resolution: (800, 1333)
  50. Epochs: 12
  51. Results:
  52. - Task: Object Detection
  53. Dataset: COCO
  54. Metrics:
  55. box AP: 38.9
  56. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r50_fpn_dpool_1x_coco/faster_rcnn_r50_fpn_dpool_1x_coco_20200307-90d3c01d.pth
  57. - Name: faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco
  58. In Collection: Deformable Convolutional Networks
  59. Config: configs/dcn/faster-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
  60. Metadata:
  61. Training Memory (GB): 6.0
  62. inference time (ms/im):
  63. - value: 80
  64. hardware: V100
  65. backend: PyTorch
  66. batch size: 1
  67. mode: FP32
  68. resolution: (800, 1333)
  69. Epochs: 12
  70. Results:
  71. - Task: Object Detection
  72. Dataset: COCO
  73. Metrics:
  74. box AP: 42.7
  75. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-1377f13d.pth
  76. - Name: faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco
  77. In Collection: Deformable Convolutional Networks
  78. Config: configs/dcn/faster-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py
  79. Metadata:
  80. Training Memory (GB): 7.3
  81. inference time (ms/im):
  82. - value: 100
  83. hardware: V100
  84. backend: PyTorch
  85. batch size: 1
  86. mode: FP32
  87. resolution: (800, 1333)
  88. Epochs: 12
  89. Results:
  90. - Task: Object Detection
  91. Dataset: COCO
  92. Metrics:
  93. box AP: 44.5
  94. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco_20200203-4f85c69c.pth
  95. - Name: mask-rcnn_r50_fpn_dconv_c3-c5_1x_coco
  96. In Collection: Deformable Convolutional Networks
  97. Config: configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
  98. Metadata:
  99. Training Memory (GB): 4.5
  100. inference time (ms/im):
  101. - value: 64.94
  102. hardware: V100
  103. backend: PyTorch
  104. batch size: 1
  105. mode: FP32
  106. resolution: (800, 1333)
  107. Epochs: 12
  108. Results:
  109. - Task: Object Detection
  110. Dataset: COCO
  111. Metrics:
  112. box AP: 41.8
  113. - Task: Instance Segmentation
  114. Dataset: COCO
  115. Metrics:
  116. mask AP: 37.4
  117. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200203-4d9ad43b.pth
  118. - Name: mask-rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco
  119. In Collection: Deformable Convolutional Networks
  120. Config: configs/dcn/mask-rcnn_r50-dconv-c3-c5_fpn_amp-1x_coco.py
  121. Metadata:
  122. Training Techniques:
  123. - SGD with Momentum
  124. - Weight Decay
  125. - Mixed Precision Training
  126. Training Memory (GB): 3.0
  127. Epochs: 12
  128. Results:
  129. - Task: Object Detection
  130. Dataset: COCO
  131. Metrics:
  132. box AP: 41.9
  133. - Task: Instance Segmentation
  134. Dataset: COCO
  135. Metrics:
  136. mask AP: 37.5
  137. Weights: https://download.openmmlab.com/mmdetection/v2.0/fp16/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco_20210520_180247-c06429d2.pth
  138. - Name: mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco
  139. In Collection: Deformable Convolutional Networks
  140. Config: configs/dcn/mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
  141. Metadata:
  142. Training Memory (GB): 6.5
  143. inference time (ms/im):
  144. - value: 85.47
  145. hardware: V100
  146. backend: PyTorch
  147. batch size: 1
  148. mode: FP32
  149. resolution: (800, 1333)
  150. Epochs: 12
  151. Results:
  152. - Task: Object Detection
  153. Dataset: COCO
  154. Metrics:
  155. box AP: 43.5
  156. - Task: Instance Segmentation
  157. Dataset: COCO
  158. Metrics:
  159. mask AP: 38.9
  160. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200216-a71f5bce.pth
  161. - Name: cascade-rcnn_r50_fpn_dconv_c3-c5_1x_coco
  162. In Collection: Deformable Convolutional Networks
  163. Config: configs/dcn/cascade-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
  164. Metadata:
  165. Training Memory (GB): 4.5
  166. inference time (ms/im):
  167. - value: 68.49
  168. hardware: V100
  169. backend: PyTorch
  170. batch size: 1
  171. mode: FP32
  172. resolution: (800, 1333)
  173. Epochs: 12
  174. Results:
  175. - Task: Object Detection
  176. Dataset: COCO
  177. Metrics:
  178. box AP: 43.8
  179. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200130-2f1fca44.pth
  180. - Name: cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco
  181. In Collection: Deformable Convolutional Networks
  182. Config: configs/dcn/cascade-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
  183. Metadata:
  184. Training Memory (GB): 6.4
  185. inference time (ms/im):
  186. - value: 90.91
  187. hardware: V100
  188. backend: PyTorch
  189. batch size: 1
  190. mode: FP32
  191. resolution: (800, 1333)
  192. Epochs: 12
  193. Results:
  194. - Task: Object Detection
  195. Dataset: COCO
  196. Metrics:
  197. box AP: 45.0
  198. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200203-3b2f0594.pth
  199. - Name: cascade-mask-rcnn_r50_fpn_dconv_c3-c5_1x_coco
  200. In Collection: Deformable Convolutional Networks
  201. Config: configs/dcn/cascade-mask-rcnn_r50-dconv-c3-c5_fpn_1x_coco.py
  202. Metadata:
  203. Training Memory (GB): 6.0
  204. inference time (ms/im):
  205. - value: 100
  206. hardware: V100
  207. backend: PyTorch
  208. batch size: 1
  209. mode: FP32
  210. resolution: (800, 1333)
  211. Epochs: 12
  212. Results:
  213. - Task: Object Detection
  214. Dataset: COCO
  215. Metrics:
  216. box AP: 44.4
  217. - Task: Instance Segmentation
  218. Dataset: COCO
  219. Metrics:
  220. mask AP: 38.6
  221. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco_20200202-42e767a2.pth
  222. - Name: cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco
  223. In Collection: Deformable Convolutional Networks
  224. Config: configs/dcn/cascade-mask-rcnn_r101-dconv-c3-c5_fpn_1x_coco.py
  225. Metadata:
  226. Training Memory (GB): 8.0
  227. inference time (ms/im):
  228. - value: 116.28
  229. hardware: V100
  230. backend: PyTorch
  231. batch size: 1
  232. mode: FP32
  233. resolution: (800, 1333)
  234. Epochs: 12
  235. Results:
  236. - Task: Object Detection
  237. Dataset: COCO
  238. Metrics:
  239. box AP: 45.8
  240. - Task: Instance Segmentation
  241. Dataset: COCO
  242. Metrics:
  243. mask AP: 39.7
  244. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco_20200204-df0c5f10.pth
  245. - Name: cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco
  246. In Collection: Deformable Convolutional Networks
  247. Config: configs/dcn/cascade-mask-rcnn_x101-32x4d-dconv-c3-c5_fpn_1x_coco.py
  248. Metadata:
  249. Training Memory (GB): 9.2
  250. Epochs: 12
  251. Results:
  252. - Task: Object Detection
  253. Dataset: COCO
  254. Metrics:
  255. box AP: 47.3
  256. - Task: Instance Segmentation
  257. Dataset: COCO
  258. Metrics:
  259. mask AP: 41.1
  260. Weights: https://download.openmmlab.com/mmdetection/v2.0/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco-e75f90c8.pth