123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960 |
- _base_ = 'ssj_270k_coco-instance.py'
- # dataset settings
- dataset_type = 'CocoDataset'
- data_root = 'data/coco/'
- image_size = (1024, 1024)
- # Example to use different file client
- # Method 1: simply set the data root and let the file I/O module
- # automatically infer from prefix (not support LMDB and Memcache yet)
- # data_root = 's3://openmmlab/datasets/detection/coco/'
- # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
- # backend_args = dict(
- # backend='petrel',
- # path_mapping=dict({
- # './data/': 's3://openmmlab/datasets/detection/',
- # 'data/': 's3://openmmlab/datasets/detection/'
- # }))
- backend_args = None
- # Standard Scale Jittering (SSJ) resizes and crops an image
- # with a resize range of 0.8 to 1.25 of the original image size.
- load_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
- dict(
- type='RandomResize',
- scale=image_size,
- ratio_range=(0.8, 1.25),
- keep_ratio=True),
- dict(
- type='RandomCrop',
- crop_type='absolute_range',
- crop_size=image_size,
- recompute_bbox=True,
- allow_negative_crop=True),
- dict(type='FilterAnnotations', min_gt_bbox_wh=(1e-2, 1e-2)),
- dict(type='RandomFlip', prob=0.5),
- dict(type='Pad', size=image_size),
- ]
- train_pipeline = [
- dict(type='CopyPaste', max_num_pasted=100),
- dict(type='PackDetInputs')
- ]
- train_dataloader = dict(
- dataset=dict(
- _delete_=True,
- type='MultiImageMixDataset',
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/instances_train2017.json',
- data_prefix=dict(img='train2017/'),
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
- pipeline=load_pipeline,
- backend_args=backend_args),
- pipeline=train_pipeline))
|