12345678910111213141516171819202122232425262728293031323334353637383940414243 |
- _base_ = [
- '../_base_/models/mask-rcnn_r50_fpn.py',
- '../_base_/datasets/cityscapes_instance.py',
- '../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py'
- ]
- model = dict(
- backbone=dict(init_cfg=None),
- roi_head=dict(
- bbox_head=dict(
- type='Shared2FCBBoxHead',
- num_classes=8,
- loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
- mask_head=dict(num_classes=8)))
- # optimizer
- # lr is set for a batch size of 8
- optim_wrapper = dict(optimizer=dict(lr=0.01))
- # learning rate
- param_scheduler = [
- dict(
- type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
- dict(
- type='MultiStepLR',
- begin=0,
- end=8,
- by_epoch=True,
- # [7] yields higher performance than [6]
- milestones=[7],
- gamma=0.1)
- ]
- # actual epoch = 8 * 8 = 64
- train_cfg = dict(max_epochs=8)
- # For better, more stable performance initialize from COCO
- load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_fpn_1x_coco/mask_rcnn_r50_fpn_1x_coco_20200205-d4b0c5d6.pth' # noqa
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (1 samples per GPU)
- # TODO: support auto scaling lr
- # auto_scale_lr = dict(base_batch_size=8)
|