metafile.yml 1.3 KB

123456789101112131415161718192021222324252627282930313233343536373839
  1. Collections:
  2. - Name: CentripetalNet
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - Adam
  7. Training Resources: 16x V100 GPUs
  8. Architecture:
  9. - Corner Pooling
  10. - Stacked Hourglass Network
  11. Paper:
  12. URL: https://arxiv.org/abs/2003.09119
  13. Title: 'CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection'
  14. README: configs/centripetalnet/README.md
  15. Code:
  16. URL: https://github.com/open-mmlab/mmdetection/blob/v2.5.0/mmdet/models/detectors/cornernet.py#L9
  17. Version: v2.5.0
  18. Models:
  19. - Name: centripetalnet_hourglass104_16xb6-crop511-210e-mstest_coco
  20. In Collection: CentripetalNet
  21. Config: configs/centripetalnet/centripetalnet_hourglass104_16xb6-crop511-210e-mstest_coco.py
  22. Metadata:
  23. Batch Size: 96
  24. Training Memory (GB): 16.7
  25. inference time (ms/im):
  26. - value: 270.27
  27. hardware: V100
  28. backend: PyTorch
  29. batch size: 1
  30. mode: FP32
  31. resolution: (800, 1333)
  32. Epochs: 210
  33. Results:
  34. - Task: Object Detection
  35. Dataset: COCO
  36. Metrics:
  37. box AP: 44.8
  38. Weights: https://download.openmmlab.com/mmdetection/v2.0/centripetalnet/centripetalnet_hourglass104_mstest_16x6_210e_coco/centripetalnet_hourglass104_mstest_16x6_210e_coco_20200915_204804-3ccc61e5.pth