123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- _base_ = [
- '../_base_/default_runtime.py', '../_base_/datasets/coco_detection.py'
- ]
- data_preprocessor = dict(
- type='DetDataPreprocessor',
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- bgr_to_rgb=True)
- # model settings
- model = dict(
- type='CornerNet',
- data_preprocessor=data_preprocessor,
- backbone=dict(
- type='HourglassNet',
- downsample_times=5,
- num_stacks=2,
- stage_channels=[256, 256, 384, 384, 384, 512],
- stage_blocks=[2, 2, 2, 2, 2, 4],
- norm_cfg=dict(type='BN', requires_grad=True)),
- neck=None,
- bbox_head=dict(
- type='CentripetalHead',
- num_classes=80,
- in_channels=256,
- num_feat_levels=2,
- corner_emb_channels=0,
- loss_heatmap=dict(
- type='GaussianFocalLoss', alpha=2.0, gamma=4.0, loss_weight=1),
- loss_offset=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1),
- loss_guiding_shift=dict(
- type='SmoothL1Loss', beta=1.0, loss_weight=0.05),
- loss_centripetal_shift=dict(
- type='SmoothL1Loss', beta=1.0, loss_weight=1)),
- # training and testing settings
- train_cfg=None,
- test_cfg=dict(
- corner_topk=100,
- local_maximum_kernel=3,
- distance_threshold=0.5,
- score_thr=0.05,
- max_per_img=100,
- nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian')))
- # data settings
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args=_base_.backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PhotoMetricDistortion',
- brightness_delta=32,
- contrast_range=(0.5, 1.5),
- saturation_range=(0.5, 1.5),
- hue_delta=18),
- dict(
- # The cropped images are padded into squares during training,
- # but may be smaller than crop_size.
- type='RandomCenterCropPad',
- crop_size=(511, 511),
- ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3),
- test_mode=False,
- test_pad_mode=None,
- mean=data_preprocessor['mean'],
- std=data_preprocessor['std'],
- # Image data is not converted to rgb.
- to_rgb=data_preprocessor['bgr_to_rgb']),
- dict(type='Resize', scale=(511, 511), keep_ratio=False),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PackDetInputs'),
- ]
- test_pipeline = [
- dict(
- type='LoadImageFromFile',
- to_float32=True,
- backend_args=_base_.backend_args),
- # don't need Resize
- dict(
- type='RandomCenterCropPad',
- crop_size=None,
- ratios=None,
- border=None,
- test_mode=True,
- test_pad_mode=['logical_or', 127],
- mean=data_preprocessor['mean'],
- std=data_preprocessor['std'],
- # Image data is not converted to rgb.
- to_rgb=data_preprocessor['bgr_to_rgb']),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border'))
- ]
- train_dataloader = dict(
- batch_size=6,
- num_workers=3,
- batch_sampler=None,
- dataset=dict(pipeline=train_pipeline))
- val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
- test_dataloader = val_dataloader
- # optimizer
- optim_wrapper = dict(
- type='OptimWrapper',
- optimizer=dict(type='Adam', lr=0.0005),
- clip_grad=dict(max_norm=35, norm_type=2))
- max_epochs = 210
- # learning rate
- param_scheduler = [
- dict(
- type='LinearLR',
- start_factor=1.0 / 3,
- by_epoch=False,
- begin=0,
- end=500),
- dict(
- type='MultiStepLR',
- begin=0,
- end=max_epochs,
- by_epoch=True,
- milestones=[190],
- gamma=0.1)
- ]
- train_cfg = dict(
- type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=1)
- val_cfg = dict(type='ValLoop')
- test_cfg = dict(type='TestLoop')
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (16 GPUs) x (6 samples per GPU)
- auto_scale_lr = dict(base_batch_size=96)
- tta_model = dict(
- type='DetTTAModel',
- tta_cfg=dict(
- nms=dict(type='soft_nms', iou_threshold=0.5, method='gaussian'),
- max_per_img=100))
- tta_pipeline = [
- dict(
- type='LoadImageFromFile',
- to_float32=True,
- backend_args=_base_.backend_args),
- dict(
- type='TestTimeAug',
- transforms=[
- [
- # ``RandomFlip`` must be placed before ``RandomCenterCropPad``,
- # otherwise bounding box coordinates after flipping cannot be
- # recovered correctly.
- dict(type='RandomFlip', prob=1.),
- dict(type='RandomFlip', prob=0.)
- ],
- [
- dict(
- type='RandomCenterCropPad',
- crop_size=None,
- ratios=None,
- border=None,
- test_mode=True,
- test_pad_mode=['logical_or', 127],
- mean=data_preprocessor['mean'],
- std=data_preprocessor['std'],
- # Image data is not converted to rgb.
- to_rgb=data_preprocessor['bgr_to_rgb'])
- ],
- [dict(type='LoadAnnotations', with_bbox=True)],
- [
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'flip', 'flip_direction', 'border'))
- ]
- ])
- ]
|