123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- _base_ = [
- '../_base_/datasets/coco_detection.py',
- '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py',
- './centernet_tta.py'
- ]
- dataset_type = 'CocoDataset'
- data_root = 'data/coco/'
- # model settings
- model = dict(
- type='CenterNet',
- data_preprocessor=dict(
- type='DetDataPreprocessor',
- mean=[123.675, 116.28, 103.53],
- std=[58.395, 57.12, 57.375],
- bgr_to_rgb=True),
- backbone=dict(
- type='ResNet',
- depth=18,
- norm_eval=False,
- norm_cfg=dict(type='BN'),
- init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet18')),
- neck=dict(
- type='CTResNetNeck',
- in_channels=512,
- num_deconv_filters=(256, 128, 64),
- num_deconv_kernels=(4, 4, 4),
- use_dcn=True),
- bbox_head=dict(
- type='CenterNetHead',
- num_classes=80,
- in_channels=64,
- feat_channels=64,
- loss_center_heatmap=dict(type='GaussianFocalLoss', loss_weight=1.0),
- loss_wh=dict(type='L1Loss', loss_weight=0.1),
- loss_offset=dict(type='L1Loss', loss_weight=1.0)),
- train_cfg=None,
- test_cfg=dict(topk=100, local_maximum_kernel=3, max_per_img=100))
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args={{_base_.backend_args}}),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PhotoMetricDistortion',
- brightness_delta=32,
- contrast_range=(0.5, 1.5),
- saturation_range=(0.5, 1.5),
- hue_delta=18),
- dict(
- type='RandomCenterCropPad',
- # The cropped images are padded into squares during training,
- # but may be less than crop_size.
- crop_size=(512, 512),
- ratios=(0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3),
- mean=[0, 0, 0],
- std=[1, 1, 1],
- to_rgb=True,
- test_pad_mode=None),
- # Make sure the output is always crop_size.
- dict(type='Resize', scale=(512, 512), keep_ratio=True),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(
- type='LoadImageFromFile',
- backend_args={{_base_.backend_args}},
- to_float32=True),
- # don't need Resize
- dict(
- type='RandomCenterCropPad',
- ratios=None,
- border=None,
- mean=[0, 0, 0],
- std=[1, 1, 1],
- to_rgb=True,
- test_mode=True,
- test_pad_mode=['logical_or', 31],
- test_pad_add_pix=1),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'border'))
- ]
- # Use RepeatDataset to speed up training
- train_dataloader = dict(
- batch_size=16,
- num_workers=4,
- persistent_workers=True,
- sampler=dict(type='DefaultSampler', shuffle=True),
- dataset=dict(
- _delete_=True,
- type='RepeatDataset',
- times=5,
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/instances_train2017.json',
- data_prefix=dict(img='train2017/'),
- filter_cfg=dict(filter_empty_gt=True, min_size=32),
- pipeline=train_pipeline,
- backend_args={{_base_.backend_args}},
- )))
- val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
- test_dataloader = val_dataloader
- # optimizer
- # Based on the default settings of modern detectors, the SGD effect is better
- # than the Adam in the source code, so we use SGD default settings and
- # if you use adam+lr5e-4, the map is 29.1.
- optim_wrapper = dict(clip_grad=dict(max_norm=35, norm_type=2))
- max_epochs = 28
- # learning policy
- # Based on the default settings of modern detectors, we added warmup settings.
- param_scheduler = [
- dict(
- type='LinearLR', start_factor=0.001, by_epoch=False, begin=0,
- end=1000),
- dict(
- type='MultiStepLR',
- begin=0,
- end=max_epochs,
- by_epoch=True,
- milestones=[18, 24], # the real step is [18*5, 24*5]
- gamma=0.1)
- ]
- train_cfg = dict(max_epochs=max_epochs) # the real epoch is 28*5=140
- # NOTE: `auto_scale_lr` is for automatically scaling LR,
- # USER SHOULD NOT CHANGE ITS VALUES.
- # base_batch_size = (8 GPUs) x (16 samples per GPU)
- auto_scale_lr = dict(base_batch_size=128)
|