metafile.yml 1.6 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152
  1. Collections:
  2. - Name: BoxInst
  3. Metadata:
  4. Training Data: COCO
  5. Training Techniques:
  6. - SGD with Momentum
  7. - Weight Decay
  8. Training Resources: 8x A100 GPUs
  9. Architecture:
  10. - ResNet
  11. - FPN
  12. - CondInst
  13. Paper:
  14. URL: https://arxiv.org/abs/2012.02310
  15. Title: 'BoxInst: High-Performance Instance Segmentation with Box Annotations'
  16. README: configs/boxinst/README.md
  17. Code:
  18. URL: https://github.com/open-mmlab/mmdetection/blob/v3.0.0rc6/mmdet/models/detectors/boxinst.py#L8
  19. Version: v3.0.0rc6
  20. Models:
  21. - Name: boxinst_r50_fpn_ms-90k_coco
  22. In Collection: BoxInst
  23. Config: configs/boxinst/boxinst_r50_fpn_ms-90k_coco.py
  24. Metadata:
  25. Iterations: 90000
  26. Results:
  27. - Task: Object Detection
  28. Dataset: COCO
  29. Metrics:
  30. box AP: 39.4
  31. - Task: Instance Segmentation
  32. Dataset: COCO
  33. Metrics:
  34. mask AP: 30.8
  35. Weights: https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r50_fpn_ms-90k_coco/boxinst_r50_fpn_ms-90k_coco_20221228_163052-6add751a.pth
  36. - Name: boxinst_r101_fpn_ms-90k_coco
  37. In Collection: BoxInst
  38. Config: configs/boxinst/boxinst_r101_fpn_ms-90k_coco.py
  39. Metadata:
  40. Iterations: 90000
  41. Results:
  42. - Task: Object Detection
  43. Dataset: COCO
  44. Metrics:
  45. box AP: 41.8
  46. - Task: Instance Segmentation
  47. Dataset: COCO
  48. Metrics:
  49. mask AP: 32.7
  50. Weights: https://download.openmmlab.com/mmdetection/v3.0/boxinst/boxinst_r101_fpn_ms-90k_coco/boxinst_r101_fpn_ms-90k_coco_20221229_145106-facf375b.pth