1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- # dataset settings
- dataset_type = 'VOCDataset'
- data_root = 'data/VOCdevkit/'
- # Example to use different file client
- # Method 1: simply set the data root and let the file I/O module
- # automatically Infer from prefix (not support LMDB and Memcache yet)
- # data_root = 's3://openmmlab/datasets/detection/segmentation/VOCdevkit/'
- # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
- # backend_args = dict(
- # backend='petrel',
- # path_mapping=dict({
- # './data/': 's3://openmmlab/datasets/segmentation/',
- # 'data/': 's3://openmmlab/datasets/segmentation/'
- # }))
- backend_args = None
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='Resize', scale=(1000, 600), keep_ratio=True),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='Resize', scale=(1000, 600), keep_ratio=True),
- # avoid bboxes being resized
- dict(type='LoadAnnotations', with_bbox=True),
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor'))
- ]
- train_dataloader = dict(
- batch_size=2,
- num_workers=2,
- persistent_workers=True,
- sampler=dict(type='DefaultSampler', shuffle=True),
- batch_sampler=dict(type='AspectRatioBatchSampler'),
- dataset=dict(
- type='RepeatDataset',
- times=3,
- dataset=dict(
- type='ConcatDataset',
- # VOCDataset will add different `dataset_type` in dataset.metainfo,
- # which will get error if using ConcatDataset. Adding
- # `ignore_keys` can avoid this error.
- ignore_keys=['dataset_type'],
- datasets=[
- dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='VOC2007/ImageSets/Main/trainval.txt',
- data_prefix=dict(sub_data_root='VOC2007/'),
- filter_cfg=dict(
- filter_empty_gt=True, min_size=32, bbox_min_size=32),
- pipeline=train_pipeline,
- backend_args=backend_args),
- dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='VOC2012/ImageSets/Main/trainval.txt',
- data_prefix=dict(sub_data_root='VOC2012/'),
- filter_cfg=dict(
- filter_empty_gt=True, min_size=32, bbox_min_size=32),
- pipeline=train_pipeline,
- backend_args=backend_args)
- ])))
- val_dataloader = dict(
- batch_size=1,
- num_workers=2,
- persistent_workers=True,
- drop_last=False,
- sampler=dict(type='DefaultSampler', shuffle=False),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='VOC2007/ImageSets/Main/test.txt',
- data_prefix=dict(sub_data_root='VOC2007/'),
- test_mode=True,
- pipeline=test_pipeline,
- backend_args=backend_args))
- test_dataloader = val_dataloader
- # Pascal VOC2007 uses `11points` as default evaluate mode, while PASCAL
- # VOC2012 defaults to use 'area'.
- val_evaluator = dict(type='VOCMetric', metric='mAP', eval_mode='11points')
- test_evaluator = val_evaluator
|