123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081 |
- # dataset settings
- dataset_type = 'OpenImagesDataset'
- data_root = 'data/OpenImages/'
- # Example to use different file client
- # Method 1: simply set the data root and let the file I/O module
- # automatically infer from prefix (not support LMDB and Memcache yet)
- # data_root = 's3://openmmlab/datasets/detection/coco/'
- # Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
- # backend_args = dict(
- # backend='petrel',
- # path_mapping=dict({
- # './data/': 's3://openmmlab/datasets/detection/',
- # 'data/': 's3://openmmlab/datasets/detection/'
- # }))
- backend_args = None
- train_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='LoadAnnotations', with_bbox=True),
- dict(type='Resize', scale=(1024, 800), keep_ratio=True),
- dict(type='RandomFlip', prob=0.5),
- dict(type='PackDetInputs')
- ]
- test_pipeline = [
- dict(type='LoadImageFromFile', backend_args=backend_args),
- dict(type='Resize', scale=(1024, 800), keep_ratio=True),
- # avoid bboxes being resized
- dict(type='LoadAnnotations', with_bbox=True),
- # TODO: find a better way to collect image_level_labels
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
- 'scale_factor', 'instances', 'image_level_labels'))
- ]
- train_dataloader = dict(
- batch_size=2,
- num_workers=0, # workers_per_gpu > 0 may occur out of memory
- persistent_workers=False,
- sampler=dict(type='DefaultSampler', shuffle=True),
- batch_sampler=dict(type='AspectRatioBatchSampler'),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/oidv6-train-annotations-bbox.csv',
- data_prefix=dict(img='OpenImages/train/'),
- label_file='annotations/class-descriptions-boxable.csv',
- hierarchy_file='annotations/bbox_labels_600_hierarchy.json',
- meta_file='annotations/train-image-metas.pkl',
- pipeline=train_pipeline,
- backend_args=backend_args))
- val_dataloader = dict(
- batch_size=1,
- num_workers=0,
- persistent_workers=False,
- drop_last=False,
- sampler=dict(type='DefaultSampler', shuffle=False),
- dataset=dict(
- type=dataset_type,
- data_root=data_root,
- ann_file='annotations/validation-annotations-bbox.csv',
- data_prefix=dict(img='OpenImages/validation/'),
- label_file='annotations/class-descriptions-boxable.csv',
- hierarchy_file='annotations/bbox_labels_600_hierarchy.json',
- meta_file='annotations/validation-image-metas.pkl',
- image_level_ann_file='annotations/validation-'
- 'annotations-human-imagelabels-boxable.csv',
- pipeline=test_pipeline,
- backend_args=backend_args))
- test_dataloader = val_dataloader
- val_evaluator = dict(
- type='OpenImagesMetric',
- iou_thrs=0.5,
- ioa_thrs=0.5,
- use_group_of=True,
- get_supercategory=True)
- test_evaluator = val_evaluator
|