123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import logging
- import os.path as osp
- from argparse import ArgumentParser
- import mmcv
- from mmengine.config import Config
- from mmengine.logging import MMLogger
- from mmengine.utils import mkdir_or_exist
- from mmdet.apis import inference_detector, init_detector
- from mmdet.registry import VISUALIZERS
- from mmdet.utils import register_all_modules
- def parse_args():
- parser = ArgumentParser()
- parser.add_argument('config', help='test config file path')
- parser.add_argument('checkpoint_root', help='Checkpoint file root path')
- parser.add_argument('--img', default='demo/demo.jpg', help='Image file')
- parser.add_argument('--aug', action='store_true', help='aug test')
- parser.add_argument('--model-name', help='model name to inference')
- parser.add_argument('--show', action='store_true', help='show results')
- parser.add_argument('--out-dir', default=None, help='Dir to output file')
- parser.add_argument(
- '--wait-time',
- type=float,
- default=1,
- help='the interval of show (s), 0 is block')
- parser.add_argument(
- '--device', default='cuda:0', help='Device used for inference')
- parser.add_argument(
- '--palette',
- default='coco',
- choices=['coco', 'voc', 'citys', 'random'],
- help='Color palette used for visualization')
- parser.add_argument(
- '--score-thr', type=float, default=0.3, help='bbox score threshold')
- args = parser.parse_args()
- return args
- def inference_model(config_name, checkpoint, visualizer, args, logger=None):
- cfg = Config.fromfile(config_name)
- if args.aug:
- raise NotImplementedError()
- model = init_detector(
- cfg, checkpoint, palette=args.palette, device=args.device)
- visualizer.dataset_meta = model.dataset_meta
- # test a single image
- result = inference_detector(model, args.img)
- # show the results
- if args.show or args.out_dir is not None:
- img = mmcv.imread(args.img)
- img = mmcv.imconvert(img, 'bgr', 'rgb')
- out_file = None
- if args.out_dir is not None:
- out_dir = args.out_dir
- mkdir_or_exist(out_dir)
- out_file = osp.join(
- out_dir,
- config_name.split('/')[-1].replace('py', 'jpg'))
- visualizer.add_datasample(
- 'result',
- img,
- data_sample=result,
- draw_gt=False,
- show=args.show,
- wait_time=args.wait_time,
- out_file=out_file,
- pred_score_thr=args.score_thr)
- return result
- # Sample test whether the inference code is correct
- def main(args):
- # register all modules in mmdet into the registries
- register_all_modules()
- config = Config.fromfile(args.config)
- # init visualizer
- visualizer_cfg = dict(type='DetLocalVisualizer', name='visualizer')
- visualizer = VISUALIZERS.build(visualizer_cfg)
- # test single model
- if args.model_name:
- if args.model_name in config:
- model_infos = config[args.model_name]
- if not isinstance(model_infos, list):
- model_infos = [model_infos]
- model_info = model_infos[0]
- config_name = model_info['config'].strip()
- print(f'processing: {config_name}', flush=True)
- checkpoint = osp.join(args.checkpoint_root,
- model_info['checkpoint'].strip())
- # build the model from a config file and a checkpoint file
- inference_model(config_name, checkpoint, visualizer, args)
- return
- else:
- raise RuntimeError('model name input error.')
- # test all model
- logger = MMLogger.get_instance(
- name='MMLogger',
- log_file='benchmark_test_image.log',
- log_level=logging.ERROR)
- for model_key in config:
- model_infos = config[model_key]
- if not isinstance(model_infos, list):
- model_infos = [model_infos]
- for model_info in model_infos:
- print('processing: ', model_info['config'], flush=True)
- config_name = model_info['config'].strip()
- checkpoint = osp.join(args.checkpoint_root,
- model_info['checkpoint'].strip())
- try:
- # build the model from a config file and a checkpoint file
- inference_model(config_name, checkpoint, visualizer, args,
- logger)
- except Exception as e:
- logger.error(f'{config_name} " : {repr(e)}')
- if __name__ == '__main__':
- args = parse_args()
- main(args)
|