|
1 年之前 | |
---|---|---|
.circleci | 1 年之前 | |
.dev_scripts | 1 年之前 | |
.github | 1 年之前 | |
configs | 1 年之前 | |
demo | 1 年之前 | |
docker | 1 年之前 | |
docs | 1 年之前 | |
mmdet | 1 年之前 | |
projects | 1 年之前 | |
requirements | 1 年之前 | |
resources | 1 年之前 | |
tests | 1 年之前 | |
tools | 1 年之前 | |
.gitignore | 1 年之前 | |
.owners.yml | 1 年之前 | |
.pre-commit-config-zh-cn.yaml | 1 年之前 | |
.pre-commit-config.yaml | 1 年之前 | |
.readthedocs.yml | 1 年之前 | |
CITATION.cff | 1 年之前 | |
LICENSE | 1 年之前 | |
MANIFEST.in | 1 年之前 | |
README.md | 1 年之前 | |
README_zh-CN.md | 1 年之前 | |
model-index.yml | 1 年之前 | |
pytest.ini | 1 年之前 | |
requirements.txt | 1 年之前 | |
setup.cfg | 1 年之前 | |
setup.py | 1 年之前 |
📘Documentation | 🛠️Installation | 👀Model Zoo | 🆕Update News | 🚀Ongoing Projects | 🤔Reporting Issues
MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.
The main branch works with PyTorch 1.6+.
We decompose the detection framework into different components and one can easily construct a customized object detection framework by combining different modules.
The toolbox directly supports multiple detection tasks such as object detection, instance segmentation, panoptic segmentation, and semi-supervised object detection.
All basic bbox and mask operations run on GPUs. The training speed is faster than or comparable to other codebases, including Detectron2, maskrcnn-benchmark and SimpleDet.
The toolbox stems from the codebase developed by the MMDet team, who won COCO Detection Challenge in 2018, and we keep pushing it forward. The newly released RTMDet also obtains new state-of-the-art results on real-time instance segmentation and rotated object detection tasks and the best parameter-accuracy trade-off on object detection.
Apart from MMDetection, we also released MMEngine for model training and MMCV for computer vision research, which are heavily depended on by this toolbox.
We are excited to announce our latest work on real-time object recognition tasks, RTMDet, a family of fully convolutional single-stage detectors. RTMDet not only achieves the best parameter-accuracy trade-off on object detection from tiny to extra-large model sizes but also obtains new state-of-the-art performance on instance segmentation and rotated object detection tasks. Details can be found in the technical report. Pre-trained models are here.
Task | Dataset | AP | FPS(TRT FP16 BS1 3090) |
---|---|---|---|
Object Detection | COCO | 52.8 | 322 |
Instance Segmentation | COCO | 44.6 | 188 |
Rotated Object Detection | DOTA | 78.9(single-scale)/81.3(multi-scale) | 121 |
v3.0.0 was released in 6/4/2023:
Please refer to Installation for installation instructions.
Please see Overview for the general introduction of MMDetection.
For detailed user guides and advanced guides, please refer to our documentation:
We also provide object detection colab tutorial and instance segmentation colab tutorial
.
To migrate from MMDetection 2.x, please refer to migration.
Results and models are available in the model zoo.
<tr align="center" valign="bottom">
<td>
<b>Object Detection</b>
</td>
<td>
<b>Instance Segmentation</b>
</td>
<td>
<b>Panoptic Segmentation</b>
</td>
<td>
<b>Other</b>
</td>
</tr>
<tr valign="top">
<td>
<ul>
<li><a href="configs/fast_rcnn">Fast R-CNN (ICCV'2015)</a></li>
<li><a href="configs/faster_rcnn">Faster R-CNN (NeurIPS'2015)</a></li>
<li><a href="configs/rpn">RPN (NeurIPS'2015)</a></li>
<li><a href="configs/ssd">SSD (ECCV'2016)</a></li>
<li><a href="configs/retinanet">RetinaNet (ICCV'2017)</a></li>
<li><a href="configs/cascade_rcnn">Cascade R-CNN (CVPR'2018)</a></li>
<li><a href="configs/yolo">YOLOv3 (ArXiv'2018)</a></li>
<li><a href="configs/cornernet">CornerNet (ECCV'2018)</a></li>
<li><a href="configs/grid_rcnn">Grid R-CNN (CVPR'2019)</a></li>
<li><a href="configs/guided_anchoring">Guided Anchoring (CVPR'2019)</a></li>
<li><a href="configs/fsaf">FSAF (CVPR'2019)</a></li>
<li><a href="configs/centernet">CenterNet (CVPR'2019)</a></li>
<li><a href="configs/libra_rcnn">Libra R-CNN (CVPR'2019)</a></li>
<li><a href="configs/tridentnet">TridentNet (ICCV'2019)</a></li>
<li><a href="configs/fcos">FCOS (ICCV'2019)</a></li>
<li><a href="configs/reppoints">RepPoints (ICCV'2019)</a></li>
<li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
<li><a href="configs/cascade_rpn">CascadeRPN (NeurIPS'2019)</a></li>
<li><a href="configs/foveabox">Foveabox (TIP'2020)</a></li>
<li><a href="configs/double_heads">Double-Head R-CNN (CVPR'2020)</a></li>
<li><a href="configs/atss">ATSS (CVPR'2020)</a></li>
<li><a href="configs/nas_fcos">NAS-FCOS (CVPR'2020)</a></li>
<li><a href="configs/centripetalnet">CentripetalNet (CVPR'2020)</a></li>
<li><a href="configs/autoassign">AutoAssign (ArXiv'2020)</a></li>
<li><a href="configs/sabl">Side-Aware Boundary Localization (ECCV'2020)</a></li>
<li><a href="configs/dynamic_rcnn">Dynamic R-CNN (ECCV'2020)</a></li>
<li><a href="configs/detr">DETR (ECCV'2020)</a></li>
<li><a href="configs/paa">PAA (ECCV'2020)</a></li>
<li><a href="configs/vfnet">VarifocalNet (CVPR'2021)</a></li>
<li><a href="configs/sparse_rcnn">Sparse R-CNN (CVPR'2021)</a></li>
<li><a href="configs/yolof">YOLOF (CVPR'2021)</a></li>
<li><a href="configs/yolox">YOLOX (CVPR'2021)</a></li>
<li><a href="configs/deformable_detr">Deformable DETR (ICLR'2021)</a></li>
<li><a href="configs/tood">TOOD (ICCV'2021)</a></li>
<li><a href="configs/ddod">DDOD (ACM MM'2021)</a></li>
<li><a href="configs/rtmdet">RTMDet (ArXiv'2022)</a></li>
<li><a href="configs/conditional_detr">Conditional DETR (ICCV'2021)</a></li>
<li><a href="configs/dab_detr">DAB-DETR (ICLR'2022)</a></li>
<li><a href="configs/dino">DINO (ICLR'2023)</a></li>
<li><a href="projects/DiffusionDet">DiffusionDet (ArXiv'2023)</a></li>
<li><a href="projects/EfficientDet">EfficientDet (CVPR'2020)</a></li>
<li><a href="projects/Detic">Detic (ECCV'2022)</a></li>
</ul>
</td>
<td>
<ul>
<li><a href="configs/mask_rcnn">Mask R-CNN (ICCV'2017)</a></li>
<li><a href="configs/cascade_rcnn">Cascade Mask R-CNN (CVPR'2018)</a></li>
<li><a href="configs/ms_rcnn">Mask Scoring R-CNN (CVPR'2019)</a></li>
<li><a href="configs/htc">Hybrid Task Cascade (CVPR'2019)</a></li>
<li><a href="configs/yolact">YOLACT (ICCV'2019)</a></li>
<li><a href="configs/instaboost">InstaBoost (ICCV'2019)</a></li>
<li><a href="configs/solo">SOLO (ECCV'2020)</a></li>
<li><a href="configs/point_rend">PointRend (CVPR'2020)</a></li>
<li><a href="configs/detectors">DetectoRS (ArXiv'2020)</a></li>
<li><a href="configs/solov2">SOLOv2 (NeurIPS'2020)</a></li>
<li><a href="configs/scnet">SCNet (AAAI'2021)</a></li>
<li><a href="configs/queryinst">QueryInst (ICCV'2021)</a></li>
<li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li>
<li><a href="configs/condinst">CondInst (ECCV'2020)</a></li>
<li><a href="projects/SparseInst">SparseInst (CVPR'2022)</a></li>
<li><a href="configs/rtmdet">RTMDet (ArXiv'2022)</a></li>
<li><a href="configs/boxinst">BoxInst (CVPR'2021)</a></li>
</ul>
</td>
<td>
<ul>
<li><a href="configs/panoptic_fpn">Panoptic FPN (CVPR'2019)</a></li>
<li><a href="configs/maskformer">MaskFormer (NeurIPS'2021)</a></li>
<li><a href="configs/mask2former">Mask2Former (ArXiv'2021)</a></li>
</ul>
</td>
<td>
</ul>
<li><b>Contrastive Learning</b></li>
<ul>
<ul>
<li><a href="configs/selfsup_pretrain">SwAV (NeurIPS'2020)</a></li>
<li><a href="configs/selfsup_pretrain">MoCo (CVPR'2020)</a></li>
<li><a href="configs/selfsup_pretrain">MoCov2 (ArXiv'2020)</a></li>
</ul>
</ul>
</ul>
<li><b>Distillation</b></li>
<ul>
<ul>
<li><a href="configs/ld">Localization Distillation (CVPR'2022)</a></li>
<li><a href="configs/lad">Label Assignment Distillation (WACV'2022)</a></li>
</ul>
</ul>
<li><b>Semi-Supervised Object Detection</b></li>
<ul>
<ul>
<li><a href="configs/soft_teacher">Soft Teacher (ICCV'2021)</a></li>
</ul>
</ul>
</ul>
</td>
</tr>
</tr>
<tr align="center" valign="bottom">
<td>
<b>Backbones</b>
</td>
<td>
<b>Necks</b>
</td>
<td>
<b>Loss</b>
</td>
<td>
<b>Common</b>
</td>
</tr>
<tr valign="top">
<td>
<ul>
<li>VGG (ICLR'2015)</li>
<li>ResNet (CVPR'2016)</li>
<li>ResNeXt (CVPR'2017)</li>
<li>MobileNetV2 (CVPR'2018)</li>
<li><a href="configs/hrnet">HRNet (CVPR'2019)</a></li>
<li><a href="configs/empirical_attention">Generalized Attention (ICCV'2019)</a></li>
<li><a href="configs/gcnet">GCNet (ICCVW'2019)</a></li>
<li><a href="configs/res2net">Res2Net (TPAMI'2020)</a></li>
<li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
<li><a href="configs/resnest">ResNeSt (ArXiv'2020)</a></li>
<li><a href="configs/pvt">PVT (ICCV'2021)</a></li>
<li><a href="configs/swin">Swin (CVPR'2021)</a></li>
<li><a href="configs/pvt">PVTv2 (ArXiv'2021)</a></li>
<li><a href="configs/resnet_strikes_back">ResNet strikes back (ArXiv'2021)</a></li>
<li><a href="configs/efficientnet">EfficientNet (ArXiv'2021)</a></li>
<li><a href="configs/convnext">ConvNeXt (CVPR'2022)</a></li>
<li><a href="projects/ConvNeXt-V2">ConvNeXtv2 (ArXiv'2023)</a></li>
</ul>
</td>
<td>
<ul>
<li><a href="configs/pafpn">PAFPN (CVPR'2018)</a></li>
<li><a href="configs/nas_fpn">NAS-FPN (CVPR'2019)</a></li>
<li><a href="configs/carafe">CARAFE (ICCV'2019)</a></li>
<li><a href="configs/fpg">FPG (ArXiv'2020)</a></li>
<li><a href="configs/groie">GRoIE (ICPR'2020)</a></li>
<li><a href="configs/dyhead">DyHead (CVPR'2021)</a></li>
</ul>
</td>
<td>
<ul>
<li><a href="configs/ghm">GHM (AAAI'2019)</a></li>
<li><a href="configs/gfl">Generalized Focal Loss (NeurIPS'2020)</a></li>
<li><a href="configs/seesaw_loss">Seasaw Loss (CVPR'2021)</a></li>
</ul>
</td>
<td>
<ul>
<li><a href="configs/faster_rcnn/faster-rcnn_r50_fpn_ohem_1x_coco.py">OHEM (CVPR'2016)</a></li>
<li><a href="configs/gn">Group Normalization (ECCV'2018)</a></li>
<li><a href="configs/dcn">DCN (ICCV'2017)</a></li>
<li><a href="configs/dcnv2">DCNv2 (CVPR'2019)</a></li>
<li><a href="configs/gn+ws">Weight Standardization (ArXiv'2019)</a></li>
<li><a href="configs/pisa">Prime Sample Attention (CVPR'2020)</a></li>
<li><a href="configs/strong_baselines">Strong Baselines (CVPR'2021)</a></li>
<li><a href="configs/resnet_strikes_back">Resnet strikes back (ArXiv'2021)</a></li>
</ul>
</td>
</tr>
</tr>
Some other methods are also supported in projects using MMDetection.
Please refer to FAQ for frequently asked questions.
We appreciate all contributions to improve MMDetection. Ongoing projects can be found in out GitHub Projects. Welcome community users to participate in these projects. Please refer to CONTRIBUTING.md for the contributing guideline.
MMDetection is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors who implement their methods or add new features, as well as users who give valuable feedbacks. We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new detectors.
If you use this toolbox or benchmark in your research, please cite this project.
@article{mmdetection,
title = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
author = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
journal= {arXiv preprint arXiv:1906.07155},
year={2019}
}
This project is released under the Apache 2.0 license.