123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import argparse
- import os
- import os.path as osp
- import warnings
- from copy import deepcopy
- from mmengine import ConfigDict
- from mmengine.config import Config, DictAction
- from mmengine.runner import Runner
- from mmdet.engine.hooks.utils import trigger_visualization_hook
- from mmdet.evaluation import DumpDetResults
- from mmdet.registry import RUNNERS
- from mmdet.utils import setup_cache_size_limit_of_dynamo
- # TODO: support fuse_conv_bn and format_only
- def parse_args():
- parser = argparse.ArgumentParser(
- description='MMDet test (and eval) a model')
- parser.add_argument('config', help='test config file path')
- parser.add_argument('checkpoint', help='checkpoint file')
- parser.add_argument(
- '--work-dir',
- help='the directory to save the file containing evaluation metrics')
- parser.add_argument(
- '--out',
- type=str,
- help='dump predictions to a pickle file for offline evaluation')
- parser.add_argument(
- '--show', action='store_true', help='show prediction results')
- parser.add_argument(
- '--show-dir',
- help='directory where painted images will be saved. '
- 'If specified, it will be automatically saved '
- 'to the work_dir/timestamp/show_dir')
- parser.add_argument(
- '--wait-time', type=float, default=2, help='the interval of show (s)')
- parser.add_argument(
- '--cfg-options',
- nargs='+',
- action=DictAction,
- help='override some settings in the used config, the key-value pair '
- 'in xxx=yyy format will be merged into config file. If the value to '
- 'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
- 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
- 'Note that the quotation marks are necessary and that no white space '
- 'is allowed.')
- parser.add_argument(
- '--launcher',
- choices=['none', 'pytorch', 'slurm', 'mpi'],
- default='none',
- help='job launcher')
- parser.add_argument('--tta', action='store_true')
- # When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
- # will pass the `--local-rank` parameter to `tools/train.py` instead
- # of `--local_rank`.
- parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
- args = parser.parse_args()
- if 'LOCAL_RANK' not in os.environ:
- os.environ['LOCAL_RANK'] = str(args.local_rank)
- return args
- def main():
- args = parse_args()
- # Reduce the number of repeated compilations and improve
- # testing speed.
- setup_cache_size_limit_of_dynamo()
- # load config
- cfg = Config.fromfile(args.config)
- cfg.launcher = args.launcher
- if args.cfg_options is not None:
- cfg.merge_from_dict(args.cfg_options)
- # work_dir is determined in this priority: CLI > segment in file > filename
- if args.work_dir is not None:
- # update configs according to CLI args if args.work_dir is not None
- cfg.work_dir = args.work_dir
- elif cfg.get('work_dir', None) is None:
- # use config filename as default work_dir if cfg.work_dir is None
- cfg.work_dir = osp.join('./work_dirs',
- osp.splitext(osp.basename(args.config))[0])
- cfg.load_from = args.checkpoint
- if args.show or args.show_dir:
- cfg = trigger_visualization_hook(cfg, args)
- if args.tta:
- if 'tta_model' not in cfg:
- warnings.warn('Cannot find ``tta_model`` in config, '
- 'we will set it as default.')
- cfg.tta_model = dict(
- type='DetTTAModel',
- tta_cfg=dict(
- nms=dict(type='nms', iou_threshold=0.5), max_per_img=100))
- if 'tta_pipeline' not in cfg:
- warnings.warn('Cannot find ``tta_pipeline`` in config, '
- 'we will set it as default.')
- test_data_cfg = cfg.test_dataloader.dataset
- while 'dataset' in test_data_cfg:
- test_data_cfg = test_data_cfg['dataset']
- cfg.tta_pipeline = deepcopy(test_data_cfg.pipeline)
- flip_tta = dict(
- type='TestTimeAug',
- transforms=[
- [
- dict(type='RandomFlip', prob=1.),
- dict(type='RandomFlip', prob=0.)
- ],
- [
- dict(
- type='PackDetInputs',
- meta_keys=('img_id', 'img_path', 'ori_shape',
- 'img_shape', 'scale_factor', 'flip',
- 'flip_direction'))
- ],
- ])
- cfg.tta_pipeline[-1] = flip_tta
- cfg.model = ConfigDict(**cfg.tta_model, module=cfg.model)
- cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline
- # build the runner from config
- if 'runner_type' not in cfg:
- # build the default runner
- runner = Runner.from_cfg(cfg)
- else:
- # build customized runner from the registry
- # if 'runner_type' is set in the cfg
- runner = RUNNERS.build(cfg)
- # add `DumpResults` dummy metric
- if args.out is not None:
- assert args.out.endswith(('.pkl', '.pickle')), \
- 'The dump file must be a pkl file.'
- runner.test_evaluator.metrics.append(
- DumpDetResults(out_file_path=args.out))
- # start testing
- runner.test()
- if __name__ == '__main__':
- main()
|