123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from argparse import ArgumentParser, Namespace
- from pathlib import Path
- from tempfile import TemporaryDirectory
- from mmengine.config import Config
- from mmengine.utils import mkdir_or_exist
- try:
- from model_archiver.model_packaging import package_model
- from model_archiver.model_packaging_utils import ModelExportUtils
- except ImportError:
- package_model = None
- def mmdet2torchserve(
- config_file: str,
- checkpoint_file: str,
- output_folder: str,
- model_name: str,
- model_version: str = '1.0',
- force: bool = False,
- ):
- """Converts MMDetection model (config + checkpoint) to TorchServe `.mar`.
- Args:
- config_file:
- In MMDetection config format.
- The contents vary for each task repository.
- checkpoint_file:
- In MMDetection checkpoint format.
- The contents vary for each task repository.
- output_folder:
- Folder where `{model_name}.mar` will be created.
- The file created will be in TorchServe archive format.
- model_name:
- If not None, used for naming the `{model_name}.mar` file
- that will be created under `output_folder`.
- If None, `{Path(checkpoint_file).stem}` will be used.
- model_version:
- Model's version.
- force:
- If True, if there is an existing `{model_name}.mar`
- file under `output_folder` it will be overwritten.
- """
- mkdir_or_exist(output_folder)
- config = Config.fromfile(config_file)
- with TemporaryDirectory() as tmpdir:
- config.dump(f'{tmpdir}/config.py')
- args = Namespace(
- **{
- 'model_file': f'{tmpdir}/config.py',
- 'serialized_file': checkpoint_file,
- 'handler': f'{Path(__file__).parent}/mmdet_handler.py',
- 'model_name': model_name or Path(checkpoint_file).stem,
- 'version': model_version,
- 'export_path': output_folder,
- 'force': force,
- 'requirements_file': None,
- 'extra_files': None,
- 'runtime': 'python',
- 'archive_format': 'default'
- })
- manifest = ModelExportUtils.generate_manifest_json(args)
- package_model(args, manifest)
- def parse_args():
- parser = ArgumentParser(
- description='Convert MMDetection models to TorchServe `.mar` format.')
- parser.add_argument('config', type=str, help='config file path')
- parser.add_argument('checkpoint', type=str, help='checkpoint file path')
- parser.add_argument(
- '--output-folder',
- type=str,
- required=True,
- help='Folder where `{model_name}.mar` will be created.')
- parser.add_argument(
- '--model-name',
- type=str,
- default=None,
- help='If not None, used for naming the `{model_name}.mar`'
- 'file that will be created under `output_folder`.'
- 'If None, `{Path(checkpoint_file).stem}` will be used.')
- parser.add_argument(
- '--model-version',
- type=str,
- default='1.0',
- help='Number used for versioning.')
- parser.add_argument(
- '-f',
- '--force',
- action='store_true',
- help='overwrite the existing `{model_name}.mar`')
- args = parser.parse_args()
- return args
- if __name__ == '__main__':
- args = parse_args()
- if package_model is None:
- raise ImportError('`torch-model-archiver` is required.'
- 'Try: pip install torch-model-archiver')
- mmdet2torchserve(args.config, args.checkpoint, args.output_folder,
- args.model_name, args.model_version, args.force)
|