123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273 |
- import argparse
- import os
- import matplotlib.pyplot as plt
- import numpy as np
- from matplotlib.ticker import MultipleLocator
- from mmcv.ops import nms
- from mmengine import Config, DictAction
- from mmengine.fileio import load
- from mmengine.registry import init_default_scope
- from mmengine.utils import ProgressBar
- from mmdet.evaluation import bbox_overlaps
- from mmdet.registry import DATASETS
- from mmdet.utils import replace_cfg_vals, update_data_root
- def parse_args():
- parser = argparse.ArgumentParser(
- description='Generate confusion matrix from detection results')
- parser.add_argument('config', help='test config file path')
- parser.add_argument(
- 'prediction_path', help='prediction path where test .pkl result')
- parser.add_argument(
- 'save_dir', help='directory where confusion matrix will be saved')
- parser.add_argument(
- '--show', action='store_true', help='show confusion matrix')
- parser.add_argument(
- '--color-theme',
- default='plasma',
- help='theme of the matrix color map')
- parser.add_argument(
- '--score-thr',
- type=float,
- default=0.3,
- help='score threshold to filter detection bboxes')
- parser.add_argument(
- '--tp-iou-thr',
- type=float,
- default=0.5,
- help='IoU threshold to be considered as matched')
- parser.add_argument(
- '--nms-iou-thr',
- type=float,
- default=None,
- help='nms IoU threshold, only applied when users want to change the'
- 'nms IoU threshold.')
- parser.add_argument(
- '--cfg-options',
- nargs='+',
- action=DictAction,
- help='override some settings in the used config, the key-value pair '
- 'in xxx=yyy format will be merged into config file. If the value to '
- 'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
- 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
- 'Note that the quotation marks are necessary and that no white space '
- 'is allowed.')
- args = parser.parse_args()
- return args
- def calculate_confusion_matrix(dataset,
- results,
- score_thr=0,
- nms_iou_thr=None,
- tp_iou_thr=0.5):
- """Calculate the confusion matrix.
- Args:
- dataset (Dataset): Test or val dataset.
- results (list[ndarray]): A list of detection results in each image.
- score_thr (float|optional): Score threshold to filter bboxes.
- Default: 0.
- nms_iou_thr (float|optional): nms IoU threshold, the detection results
- have done nms in the detector, only applied when users want to
- change the nms IoU threshold. Default: None.
- tp_iou_thr (float|optional): IoU threshold to be considered as matched.
- Default: 0.5.
- """
- num_classes = len(dataset.metainfo['classes'])
- confusion_matrix = np.zeros(shape=[num_classes + 1, num_classes + 1])
- assert len(dataset) == len(results)
- prog_bar = ProgressBar(len(results))
- for idx, per_img_res in enumerate(results):
- res_bboxes = per_img_res['pred_instances']
- gts = dataset.get_data_info(idx)['instances']
- analyze_per_img_dets(confusion_matrix, gts, res_bboxes, score_thr,
- tp_iou_thr, nms_iou_thr)
- prog_bar.update()
- return confusion_matrix
- def analyze_per_img_dets(confusion_matrix,
- gts,
- result,
- score_thr=0,
- tp_iou_thr=0.5,
- nms_iou_thr=None):
- """Analyze detection results on each image.
- Args:
- confusion_matrix (ndarray): The confusion matrix,
- has shape (num_classes + 1, num_classes + 1).
- gt_bboxes (ndarray): Ground truth bboxes, has shape (num_gt, 4).
- gt_labels (ndarray): Ground truth labels, has shape (num_gt).
- result (ndarray): Detection results, has shape
- (num_classes, num_bboxes, 5).
- score_thr (float): Score threshold to filter bboxes.
- Default: 0.
- tp_iou_thr (float): IoU threshold to be considered as matched.
- Default: 0.5.
- nms_iou_thr (float|optional): nms IoU threshold, the detection results
- have done nms in the detector, only applied when users want to
- change the nms IoU threshold. Default: None.
- """
- true_positives = np.zeros(len(gts))
- gt_bboxes = []
- gt_labels = []
- for gt in gts:
- gt_bboxes.append(gt['bbox'])
- gt_labels.append(gt['bbox_label'])
- gt_bboxes = np.array(gt_bboxes)
- gt_labels = np.array(gt_labels)
- unique_label = np.unique(result['labels'].numpy())
- for det_label in unique_label:
- mask = (result['labels'] == det_label)
- det_bboxes = result['bboxes'][mask].numpy()
- det_scores = result['scores'][mask].numpy()
- if nms_iou_thr:
- det_bboxes, _ = nms(
- det_bboxes, det_scores, nms_iou_thr, score_threshold=score_thr)
- ious = bbox_overlaps(det_bboxes[:, :4], gt_bboxes)
- for i, score in enumerate(det_scores):
- det_match = 0
- if score >= score_thr:
- for j, gt_label in enumerate(gt_labels):
- if ious[i, j] >= tp_iou_thr:
- det_match += 1
- if gt_label == det_label:
- true_positives[j] += 1 # TP
- confusion_matrix[gt_label, det_label] += 1
- if det_match == 0: # BG FP
- confusion_matrix[-1, det_label] += 1
- for num_tp, gt_label in zip(true_positives, gt_labels):
- if num_tp == 0: # FN
- confusion_matrix[gt_label, -1] += 1
- def plot_confusion_matrix(confusion_matrix,
- labels,
- save_dir=None,
- show=True,
- title='Normalized Confusion Matrix',
- color_theme='plasma'):
- """Draw confusion matrix with matplotlib.
- Args:
- confusion_matrix (ndarray): The confusion matrix.
- labels (list[str]): List of class names.
- save_dir (str|optional): If set, save the confusion matrix plot to the
- given path. Default: None.
- show (bool): Whether to show the plot. Default: True.
- title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
- color_theme (str): Theme of the matrix color map. Default: `plasma`.
- """
- # normalize the confusion matrix
- per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
- confusion_matrix = \
- confusion_matrix.astype(np.float32) / per_label_sums * 100
- num_classes = len(labels)
- fig, ax = plt.subplots(
- figsize=(0.5 * num_classes, 0.5 * num_classes * 0.8), dpi=180)
- cmap = plt.get_cmap(color_theme)
- im = ax.imshow(confusion_matrix, cmap=cmap)
- plt.colorbar(mappable=im, ax=ax)
- title_font = {'weight': 'bold', 'size': 12}
- ax.set_title(title, fontdict=title_font)
- label_font = {'size': 10}
- plt.ylabel('Ground Truth Label', fontdict=label_font)
- plt.xlabel('Prediction Label', fontdict=label_font)
- # draw locator
- xmajor_locator = MultipleLocator(1)
- xminor_locator = MultipleLocator(0.5)
- ax.xaxis.set_major_locator(xmajor_locator)
- ax.xaxis.set_minor_locator(xminor_locator)
- ymajor_locator = MultipleLocator(1)
- yminor_locator = MultipleLocator(0.5)
- ax.yaxis.set_major_locator(ymajor_locator)
- ax.yaxis.set_minor_locator(yminor_locator)
- # draw grid
- ax.grid(True, which='minor', linestyle='-')
- # draw label
- ax.set_xticks(np.arange(num_classes))
- ax.set_yticks(np.arange(num_classes))
- ax.set_xticklabels(labels)
- ax.set_yticklabels(labels)
- ax.tick_params(
- axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
- plt.setp(
- ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')
- # draw confution matrix value
- for i in range(num_classes):
- for j in range(num_classes):
- ax.text(
- j,
- i,
- '{}%'.format(
- int(confusion_matrix[
- i,
- j]) if not np.isnan(confusion_matrix[i, j]) else -1),
- ha='center',
- va='center',
- color='w',
- size=7)
- ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1
- fig.tight_layout()
- if save_dir is not None:
- plt.savefig(
- os.path.join(save_dir, 'confusion_matrix.png'), format='png')
- if show:
- plt.show()
- def main():
- args = parse_args()
- cfg = Config.fromfile(args.config)
- # replace the ${key} with the value of cfg.key
- cfg = replace_cfg_vals(cfg)
- # update data root according to MMDET_DATASETS
- update_data_root(cfg)
- if args.cfg_options is not None:
- cfg.merge_from_dict(args.cfg_options)
- init_default_scope(cfg.get('default_scope', 'mmdet'))
- results = load(args.prediction_path)
- if not os.path.exists(args.save_dir):
- os.makedirs(args.save_dir)
- dataset = DATASETS.build(cfg.test_dataloader.dataset)
- confusion_matrix = calculate_confusion_matrix(dataset, results,
- args.score_thr,
- args.nms_iou_thr,
- args.tp_iou_thr)
- plot_confusion_matrix(
- confusion_matrix,
- dataset.metainfo['classes'] + ('background', ),
- save_dir=args.save_dir,
- show=args.show,
- color_theme=args.color_theme)
- if __name__ == '__main__':
- main()
|