12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from math import ceil
- from unittest import TestCase
- import torch
- from mmengine import Config
- from mmengine.structures import InstanceData
- from mmdet import * # noqa
- from mmdet.models.dense_heads import SSDHead
- class TestSSDHead(TestCase):
- def test_ssd_head_loss(self):
- """Tests ssd head loss when truth is empty and non-empty."""
- s = 300
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- cfg = Config(
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.5,
- neg_iou_thr=0.5,
- min_pos_iou=0.,
- ignore_iof_thr=-1,
- gt_max_assign_all=False),
- sampler=dict(type='PseudoSampler'),
- smoothl1_beta=1.,
- allowed_border=-1,
- pos_weight=-1,
- neg_pos_ratio=3,
- debug=False))
- ssd_head = SSDHead(
- num_classes=4,
- in_channels=(1, 1, 1, 1, 1, 1),
- stacked_convs=1,
- feat_channels=1,
- use_depthwise=True,
- anchor_generator=dict(
- type='SSDAnchorGenerator',
- scale_major=False,
- input_size=s,
- basesize_ratio_range=(0.15, 0.9),
- strides=[8, 16, 32, 64, 100, 300],
- ratios=[[2], [2, 3], [2, 3], [2, 3], [2], [2]]),
- train_cfg=cfg)
- # SSD head expects a multiple levels of features per image
- feats = (
- torch.rand(1, 1, ceil(s / stride[0]), ceil(s / stride[0]))
- for stride in ssd_head.prior_generator.strides)
- cls_scores, bbox_preds = ssd_head.forward(feats)
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = ssd_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas)
- # When there is no truth, cls_loss and box_loss should all be zero.
- empty_cls_loss = sum(empty_gt_losses['loss_cls'])
- empty_box_loss = sum(empty_gt_losses['loss_bbox'])
- self.assertEqual(
- empty_cls_loss.item(), 0,
- 'there should be no cls loss when there are no true boxes')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = ssd_head.loss_by_feat(cls_scores, bbox_preds,
- [gt_instances], img_metas)
- onegt_cls_loss = sum(one_gt_losses['loss_cls'])
- onegt_box_loss = sum(one_gt_losses['loss_bbox'])
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss.item(), 0,
- 'box loss should be non-zero')
|