123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import numpy as np
- import torch
- from mmengine import Config
- from mmengine.structures import InstanceData
- from mmdet import * # noqa
- from mmdet.models.dense_heads import LADHead, lad_head
- from mmdet.models.dense_heads.lad_head import levels_to_images
- class TestLADHead(TestCase):
- def test_lad_head_loss(self):
- """Tests lad head loss when truth is empty and non-empty."""
- class mock_skm:
- def GaussianMixture(self, *args, **kwargs):
- return self
- def fit(self, loss):
- pass
- def predict(self, loss):
- components = np.zeros_like(loss, dtype=np.long)
- return components.reshape(-1)
- def score_samples(self, loss):
- scores = np.random.random(len(loss))
- return scores
- lad_head.skm = mock_skm()
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1
- }]
- train_cfg = Config(
- dict(
- assigner=dict(
- type='MaxIoUAssigner',
- pos_iou_thr=0.1,
- neg_iou_thr=0.1,
- min_pos_iou=0,
- ignore_iof_thr=-1),
- allowed_border=-1,
- pos_weight=-1,
- debug=False))
- # since Focal Loss is not supported on CPU
- # since Focal Loss is not supported on CPU
- lad = LADHead(
- num_classes=4,
- in_channels=1,
- train_cfg=train_cfg,
- loss_cls=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
- loss_bbox=dict(type='GIoULoss', loss_weight=1.3),
- loss_centerness=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5))
- teacher_model = LADHead(
- num_classes=4,
- in_channels=1,
- train_cfg=train_cfg,
- loss_cls=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
- loss_bbox=dict(type='GIoULoss', loss_weight=1.3),
- loss_centerness=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5))
- feat = [
- torch.rand(1, 1, s // feat_size, s // feat_size)
- for feat_size in [4, 8, 16, 32, 64]
- ]
- lad.init_weights()
- teacher_model.init_weights()
- # Test that empty ground truth encourages the network to predict
- # background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- batch_gt_instances_ignore = None
- outs_teacher = teacher_model(feat)
- label_assignment_results = teacher_model.get_label_assignment(
- *outs_teacher, [gt_instances], img_metas,
- batch_gt_instances_ignore)
- outs = teacher_model(feat)
- empty_gt_losses = lad.loss_by_feat(*outs, [gt_instances], img_metas,
- batch_gt_instances_ignore,
- label_assignment_results)
- # When there is no truth, the cls loss should be nonzero but there
- # should be no box loss.
- empty_cls_loss = empty_gt_losses['loss_cls']
- empty_box_loss = empty_gt_losses['loss_bbox']
- empty_iou_loss = empty_gt_losses['loss_iou']
- self.assertGreater(empty_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertEqual(
- empty_box_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- self.assertEqual(
- empty_iou_loss.item(), 0,
- 'there should be no box loss when there are no true boxes')
- # When truth is non-empty then both cls and box loss should be nonzero
- # for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- batch_gt_instances_ignore = None
- label_assignment_results = teacher_model.get_label_assignment(
- *outs_teacher, [gt_instances], img_metas,
- batch_gt_instances_ignore)
- one_gt_losses = lad.loss_by_feat(*outs, [gt_instances], img_metas,
- batch_gt_instances_ignore,
- label_assignment_results)
- onegt_cls_loss = one_gt_losses['loss_cls']
- onegt_box_loss = one_gt_losses['loss_bbox']
- onegt_iou_loss = one_gt_losses['loss_iou']
- self.assertGreater(onegt_cls_loss.item(), 0,
- 'cls loss should be non-zero')
- self.assertGreater(onegt_box_loss.item(), 0,
- 'box loss should be non-zero')
- self.assertGreater(onegt_iou_loss.item(), 0,
- 'box loss should be non-zero')
- n, c, h, w = 10, 4, 20, 20
- mlvl_tensor = [torch.ones(n, c, h, w) for i in range(5)]
- results = levels_to_images(mlvl_tensor)
- self.assertEqual(len(results), n)
- self.assertEqual(results[0].size(), (h * w * 5, c))
- self.assertTrue(lad.with_score_voting)
- lad = LADHead(
- num_classes=4,
- in_channels=1,
- train_cfg=train_cfg,
- anchor_generator=dict(
- type='AnchorGenerator',
- ratios=[1.0],
- octave_base_scale=8,
- scales_per_octave=1,
- strides=[8]),
- loss_cls=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
- loss_bbox=dict(type='GIoULoss', loss_weight=1.3),
- loss_centerness=dict(
- type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.5))
- cls_scores = [torch.ones(2, 4, 5, 5)]
- bbox_preds = [torch.ones(2, 4, 5, 5)]
- iou_preds = [torch.ones(2, 1, 5, 5)]
- cfg = Config(
- dict(
- nms_pre=1000,
- min_bbox_size=0,
- score_thr=0.05,
- nms=dict(type='nms', iou_threshold=0.6),
- max_per_img=100))
- rescale = False
- lad.predict_by_feat(
- cls_scores, bbox_preds, iou_preds, img_metas, cfg, rescale=rescale)
|