123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import numpy as np
- import torch
- from mmengine import MessageHub
- from mmengine.config import ConfigDict
- from mmengine.structures import InstanceData
- from mmdet.models.dense_heads import BoxInstBboxHead, BoxInstMaskHead
- from mmdet.structures.mask import BitmapMasks
- def _rand_masks(num_items, bboxes, img_w, img_h):
- rng = np.random.RandomState(0)
- masks = np.zeros((num_items, img_h, img_w), dtype=np.float32)
- for i, bbox in enumerate(bboxes):
- bbox = bbox.astype(np.int32)
- mask = (rng.rand(1, bbox[3] - bbox[1], bbox[2] - bbox[0]) >
- 0.3).astype(np.int64)
- masks[i:i + 1, bbox[1]:bbox[3], bbox[0]:bbox[2]] = mask
- return BitmapMasks(masks, height=img_h, width=img_w)
- def _fake_mask_feature_head():
- mask_feature_head = ConfigDict(
- in_channels=1,
- feat_channels=1,
- start_level=0,
- end_level=2,
- out_channels=8,
- mask_stride=8,
- num_stacked_convs=4,
- norm_cfg=dict(type='BN', requires_grad=True))
- return mask_feature_head
- class TestBoxInstHead(TestCase):
- def test_boxinst_maskhead_loss(self):
- """Tests boxinst maskhead loss when truth is empty and non-empty."""
- s = 256
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- boxinst_bboxhead = BoxInstBboxHead(
- num_classes=4,
- in_channels=1,
- feat_channels=1,
- stacked_convs=1,
- norm_cfg=None)
- mask_feature_head = _fake_mask_feature_head()
- boxinst_maskhead = BoxInstMaskHead(
- mask_feature_head=mask_feature_head,
- loss_mask=dict(
- type='DiceLoss',
- use_sigmoid=True,
- activate=True,
- eps=5e-6,
- loss_weight=1.0))
- # Fcos head expects a multiple levels of features per image
- feats = []
- for i in range(len(boxinst_bboxhead.strides)):
- feats.append(
- torch.rand(1, 1, s // (2**(i + 3)), s // (2**(i + 3))))
- feats = tuple(feats)
- cls_scores, bbox_preds, centernesses, param_preds =\
- boxinst_bboxhead.forward(feats)
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- gt_instances.masks = _rand_masks(0, gt_instances.bboxes.numpy(), s, s)
- gt_instances.pairwise_masks = _rand_masks(
- 0, gt_instances.bboxes.numpy(), s // 4, s // 4).to_tensor(
- dtype=torch.float32,
- device='cpu').unsqueeze(1).repeat(1, 8, 1, 1)
- message_hub = MessageHub.get_instance('runtime_info')
- message_hub.update_info('iter', 1)
- _ = boxinst_bboxhead.loss_by_feat(cls_scores, bbox_preds, centernesses,
- param_preds, [gt_instances],
- img_metas)
- # When truth is empty then all mask loss
- # should be zero for random inputs
- positive_infos = boxinst_bboxhead.get_positive_infos()
- mask_outs = boxinst_maskhead.forward(feats, positive_infos)
- empty_gt_mask_losses = boxinst_maskhead.loss_by_feat(
- *mask_outs, [gt_instances], img_metas, positive_infos)
- loss_mask_project = empty_gt_mask_losses['loss_mask_project']
- loss_mask_pairwise = empty_gt_mask_losses['loss_mask_pairwise']
- self.assertEqual(loss_mask_project, 0,
- 'mask project loss should be zero')
- self.assertEqual(loss_mask_pairwise, 0,
- 'mask pairwise loss should be zero')
- # When truth is non-empty then all cls, box loss and centerness loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor([[0.111, 0.222, 25.6667, 29.8757]])
- gt_instances.labels = torch.LongTensor([2])
- gt_instances.masks = _rand_masks(1, gt_instances.bboxes.numpy(), s, s)
- gt_instances.pairwise_masks = _rand_masks(
- 1, gt_instances.bboxes.numpy(), s // 4, s // 4).to_tensor(
- dtype=torch.float32,
- device='cpu').unsqueeze(1).repeat(1, 8, 1, 1)
- _ = boxinst_bboxhead.loss_by_feat(cls_scores, bbox_preds, centernesses,
- param_preds, [gt_instances],
- img_metas)
- positive_infos = boxinst_bboxhead.get_positive_infos()
- mask_outs = boxinst_maskhead.forward(feats, positive_infos)
- one_gt_mask_losses = boxinst_maskhead.loss_by_feat(
- *mask_outs, [gt_instances], img_metas, positive_infos)
- loss_mask_project = one_gt_mask_losses['loss_mask_project']
- loss_mask_pairwise = one_gt_mask_losses['loss_mask_pairwise']
- self.assertGreater(loss_mask_project, 0,
- 'mask project loss should be nonzero')
- self.assertGreater(loss_mask_pairwise, 0,
- 'mask pairwise loss should be nonzero')
|