1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from unittest import TestCase
- import torch
- from mmengine.structures import InstanceData
- from mmdet.models.dense_heads import AutoAssignHead
- class TestAutoAssignHead(TestCase):
- def test_autoassign_head_loss(self):
- """Tests autoassign head loss when truth is empty and non-empty."""
- s = 300
- img_metas = [{
- 'img_shape': (s, s, 3),
- 'pad_shape': (s, s, 3),
- 'scale_factor': 1,
- }]
- autoassign_head = AutoAssignHead(
- num_classes=4,
- in_channels=1,
- stacked_convs=1,
- feat_channels=1,
- strides=[8, 16, 32, 64, 128],
- loss_bbox=dict(type='GIoULoss', loss_weight=5.0),
- norm_cfg=None)
- # Fcos head expects a multiple levels of features per image
- feats = (
- torch.rand(1, 1, s // stride[1], s // stride[0])
- for stride in autoassign_head.prior_generator.strides)
- cls_scores, bbox_preds, centernesses = autoassign_head.forward(feats)
- # Test that empty ground truth encourages the network to
- # predict background
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.empty((0, 4))
- gt_instances.labels = torch.LongTensor([])
- empty_gt_losses = autoassign_head.loss_by_feat(cls_scores, bbox_preds,
- centernesses,
- [gt_instances],
- img_metas)
- # When there is no truth, the neg loss should be nonzero but
- # pos loss and center loss should be zero
- empty_pos_loss = empty_gt_losses['loss_pos'].item()
- empty_neg_loss = empty_gt_losses['loss_neg'].item()
- empty_ctr_loss = empty_gt_losses['loss_center'].item()
- self.assertGreater(empty_neg_loss, 0, 'neg loss should be non-zero')
- self.assertEqual(
- empty_pos_loss, 0,
- 'there should be no pos loss when there are no true boxes')
- self.assertEqual(
- empty_ctr_loss, 0,
- 'there should be no centerness loss when there are no true boxes')
- # When truth is non-empty then all pos, neg loss and center loss
- # should be nonzero for random inputs
- gt_instances = InstanceData()
- gt_instances.bboxes = torch.Tensor(
- [[23.6667, 23.8757, 238.6326, 151.8874]])
- gt_instances.labels = torch.LongTensor([2])
- one_gt_losses = autoassign_head.loss_by_feat(cls_scores, bbox_preds,
- centernesses,
- [gt_instances], img_metas)
- onegt_pos_loss = one_gt_losses['loss_pos'].item()
- onegt_neg_loss = one_gt_losses['loss_neg'].item()
- onegt_ctr_loss = one_gt_losses['loss_center'].item()
- self.assertGreater(onegt_pos_loss, 0, 'pos loss should be non-zero')
- self.assertGreater(onegt_neg_loss, 0, 'neg loss should be non-zero')
- self.assertGreater(onegt_ctr_loss, 0, 'center loss should be non-zero')
|