1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import pytest
- import torch
- from mmdet.models.backbones import Res2Net
- from mmdet.models.backbones.res2net import Bottle2neck
- from .utils import is_block
- def test_res2net_bottle2neck():
- with pytest.raises(AssertionError):
- # Style must be in ['pytorch', 'caffe']
- Bottle2neck(64, 64, base_width=26, scales=4, style='tensorflow')
- with pytest.raises(AssertionError):
- # Scale must be larger than 1
- Bottle2neck(64, 64, base_width=26, scales=1, style='pytorch')
- # Test Res2Net Bottle2neck structure
- block = Bottle2neck(
- 64, 64, base_width=26, stride=2, scales=4, style='pytorch')
- assert block.scales == 4
- # Test Res2Net Bottle2neck with DCN
- dcn = dict(type='DCN', deform_groups=1, fallback_on_stride=False)
- with pytest.raises(AssertionError):
- # conv_cfg must be None if dcn is not None
- Bottle2neck(
- 64,
- 64,
- base_width=26,
- scales=4,
- dcn=dcn,
- conv_cfg=dict(type='Conv'))
- Bottle2neck(64, 64, dcn=dcn)
- # Test Res2Net Bottle2neck forward
- block = Bottle2neck(64, 16, base_width=26, scales=4)
- x = torch.randn(1, 64, 56, 56)
- x_out = block(x)
- assert x_out.shape == torch.Size([1, 64, 56, 56])
- def test_res2net_backbone():
- with pytest.raises(KeyError):
- # Res2Net depth should be in [50, 101, 152]
- Res2Net(depth=18)
- # Test Res2Net with scales 4, base_width 26
- model = Res2Net(depth=50, scales=4, base_width=26)
- for m in model.modules():
- if is_block(m):
- assert m.scales == 4
- model.train()
- imgs = torch.randn(1, 3, 32, 32)
- feat = model(imgs)
- assert len(feat) == 4
- assert feat[0].shape == torch.Size([1, 256, 8, 8])
- assert feat[1].shape == torch.Size([1, 512, 4, 4])
- assert feat[2].shape == torch.Size([1, 1024, 2, 2])
- assert feat[3].shape == torch.Size([1, 2048, 1, 1])
|