123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import datetime
- import logging
- import os
- import platform
- import warnings
- import cv2
- import torch.multiprocessing as mp
- from mmengine import DefaultScope
- from mmengine.logging import print_log
- from mmengine.utils import digit_version
- def setup_cache_size_limit_of_dynamo():
- """Setup cache size limit of dynamo.
- Note: Due to the dynamic shape of the loss calculation and
- post-processing parts in the object detection algorithm, these
- functions must be compiled every time they are run.
- Setting a large value for torch._dynamo.config.cache_size_limit
- may result in repeated compilation, which can slow down training
- and testing speed. Therefore, we need to set the default value of
- cache_size_limit smaller. An empirical value is 4.
- """
- import torch
- if digit_version(torch.__version__) >= digit_version('2.0.0'):
- if 'DYNAMO_CACHE_SIZE_LIMIT' in os.environ:
- import torch._dynamo
- cache_size_limit = int(os.environ['DYNAMO_CACHE_SIZE_LIMIT'])
- torch._dynamo.config.cache_size_limit = cache_size_limit
- print_log(
- f'torch._dynamo.config.cache_size_limit is force '
- f'set to {cache_size_limit}.',
- logger='current',
- level=logging.WARNING)
- def setup_multi_processes(cfg):
- """Setup multi-processing environment variables."""
- # set multi-process start method as `fork` to speed up the training
- if platform.system() != 'Windows':
- mp_start_method = cfg.get('mp_start_method', 'fork')
- current_method = mp.get_start_method(allow_none=True)
- if current_method is not None and current_method != mp_start_method:
- warnings.warn(
- f'Multi-processing start method `{mp_start_method}` is '
- f'different from the previous setting `{current_method}`.'
- f'It will be force set to `{mp_start_method}`. You can change '
- f'this behavior by changing `mp_start_method` in your config.')
- mp.set_start_method(mp_start_method, force=True)
- # disable opencv multithreading to avoid system being overloaded
- opencv_num_threads = cfg.get('opencv_num_threads', 0)
- cv2.setNumThreads(opencv_num_threads)
- # setup OMP threads
- # This code is referred from https://github.com/pytorch/pytorch/blob/master/torch/distributed/run.py # noqa
- workers_per_gpu = cfg.data.get('workers_per_gpu', 1)
- if 'train_dataloader' in cfg.data:
- workers_per_gpu = \
- max(cfg.data.train_dataloader.get('workers_per_gpu', 1),
- workers_per_gpu)
- if 'OMP_NUM_THREADS' not in os.environ and workers_per_gpu > 1:
- omp_num_threads = 1
- warnings.warn(
- f'Setting OMP_NUM_THREADS environment variable for each process '
- f'to be {omp_num_threads} in default, to avoid your system being '
- f'overloaded, please further tune the variable for optimal '
- f'performance in your application as needed.')
- os.environ['OMP_NUM_THREADS'] = str(omp_num_threads)
- # setup MKL threads
- if 'MKL_NUM_THREADS' not in os.environ and workers_per_gpu > 1:
- mkl_num_threads = 1
- warnings.warn(
- f'Setting MKL_NUM_THREADS environment variable for each process '
- f'to be {mkl_num_threads} in default, to avoid your system being '
- f'overloaded, please further tune the variable for optimal '
- f'performance in your application as needed.')
- os.environ['MKL_NUM_THREADS'] = str(mkl_num_threads)
- def register_all_modules(init_default_scope: bool = True) -> None:
- """Register all modules in mmdet into the registries.
- Args:
- init_default_scope (bool): Whether initialize the mmdet default scope.
- When `init_default_scope=True`, the global default scope will be
- set to `mmdet`, and all registries will build modules from mmdet's
- registry node. To understand more about the registry, please refer
- to https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/registry.md
- Defaults to True.
- """ # noqa
- import mmdet.datasets # noqa: F401,F403
- import mmdet.engine # noqa: F401,F403
- import mmdet.evaluation # noqa: F401,F403
- import mmdet.models # noqa: F401,F403
- import mmdet.visualization # noqa: F401,F403
- if init_default_scope:
- never_created = DefaultScope.get_current_instance() is None \
- or not DefaultScope.check_instance_created('mmdet')
- if never_created:
- DefaultScope.get_instance('mmdet', scope_name='mmdet')
- return
- current_scope = DefaultScope.get_current_instance()
- if current_scope.scope_name != 'mmdet':
- warnings.warn('The current default scope '
- f'"{current_scope.scope_name}" is not "mmdet", '
- '`register_all_modules` will force the current'
- 'default scope to be "mmdet". If this is not '
- 'expected, please set `init_default_scope=False`.')
- # avoid name conflict
- new_instance_name = f'mmdet-{datetime.datetime.now()}'
- DefaultScope.get_instance(new_instance_name, scope_name='mmdet')
|