1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import numpy as np
- import pycocotools.mask as mask_util
- import torch
- from mmengine.utils import slice_list
- def split_combined_polys(polys, poly_lens, polys_per_mask):
- """Split the combined 1-D polys into masks.
- A mask is represented as a list of polys, and a poly is represented as
- a 1-D array. In dataset, all masks are concatenated into a single 1-D
- tensor. Here we need to split the tensor into original representations.
- Args:
- polys (list): a list (length = image num) of 1-D tensors
- poly_lens (list): a list (length = image num) of poly length
- polys_per_mask (list): a list (length = image num) of poly number
- of each mask
- Returns:
- list: a list (length = image num) of list (length = mask num) of \
- list (length = poly num) of numpy array.
- """
- mask_polys_list = []
- for img_id in range(len(polys)):
- polys_single = polys[img_id]
- polys_lens_single = poly_lens[img_id].tolist()
- polys_per_mask_single = polys_per_mask[img_id].tolist()
- split_polys = slice_list(polys_single, polys_lens_single)
- mask_polys = slice_list(split_polys, polys_per_mask_single)
- mask_polys_list.append(mask_polys)
- return mask_polys_list
- # TODO: move this function to more proper place
- def encode_mask_results(mask_results):
- """Encode bitmap mask to RLE code.
- Args:
- mask_results (list): bitmap mask results.
- Returns:
- list | tuple: RLE encoded mask.
- """
- encoded_mask_results = []
- for mask in mask_results:
- encoded_mask_results.append(
- mask_util.encode(
- np.array(mask[:, :, np.newaxis], order='F',
- dtype='uint8'))[0]) # encoded with RLE
- return encoded_mask_results
- def mask2bbox(masks):
- """Obtain tight bounding boxes of binary masks.
- Args:
- masks (Tensor): Binary mask of shape (n, h, w).
- Returns:
- Tensor: Bboxe with shape (n, 4) of \
- positive region in binary mask.
- """
- N = masks.shape[0]
- bboxes = masks.new_zeros((N, 4), dtype=torch.float32)
- x_any = torch.any(masks, dim=1)
- y_any = torch.any(masks, dim=2)
- for i in range(N):
- x = torch.where(x_any[i, :])[0]
- y = torch.where(y_any[i, :])[0]
- if len(x) > 0 and len(y) > 0:
- bboxes[i, :] = bboxes.new_tensor(
- [x[0], y[0], x[-1] + 1, y[-1] + 1])
- return bboxes
|