12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import torch
- from mmcv.ops import point_sample
- from torch import Tensor
- def get_uncertainty(mask_preds: Tensor, labels: Tensor) -> Tensor:
- """Estimate uncertainty based on pred logits.
- We estimate uncertainty as L1 distance between 0.0 and the logits
- prediction in 'mask_preds' for the foreground class in `classes`.
- Args:
- mask_preds (Tensor): mask predication logits, shape (num_rois,
- num_classes, mask_height, mask_width).
- labels (Tensor): Either predicted or ground truth label for
- each predicted mask, of length num_rois.
- Returns:
- scores (Tensor): Uncertainty scores with the most uncertain
- locations having the highest uncertainty score,
- shape (num_rois, 1, mask_height, mask_width)
- """
- if mask_preds.shape[1] == 1:
- gt_class_logits = mask_preds.clone()
- else:
- inds = torch.arange(mask_preds.shape[0], device=mask_preds.device)
- gt_class_logits = mask_preds[inds, labels].unsqueeze(1)
- return -torch.abs(gt_class_logits)
- def get_uncertain_point_coords_with_randomness(
- mask_preds: Tensor, labels: Tensor, num_points: int,
- oversample_ratio: float, importance_sample_ratio: float) -> Tensor:
- """Get ``num_points`` most uncertain points with random points during
- train.
- Sample points in [0, 1] x [0, 1] coordinate space based on their
- uncertainty. The uncertainties are calculated for each point using
- 'get_uncertainty()' function that takes point's logit prediction as
- input.
- Args:
- mask_preds (Tensor): A tensor of shape (num_rois, num_classes,
- mask_height, mask_width) for class-specific or class-agnostic
- prediction.
- labels (Tensor): The ground truth class for each instance.
- num_points (int): The number of points to sample.
- oversample_ratio (float): Oversampling parameter.
- importance_sample_ratio (float): Ratio of points that are sampled
- via importnace sampling.
- Returns:
- point_coords (Tensor): A tensor of shape (num_rois, num_points, 2)
- that contains the coordinates sampled points.
- """
- assert oversample_ratio >= 1
- assert 0 <= importance_sample_ratio <= 1
- batch_size = mask_preds.shape[0]
- num_sampled = int(num_points * oversample_ratio)
- point_coords = torch.rand(
- batch_size, num_sampled, 2, device=mask_preds.device)
- point_logits = point_sample(mask_preds, point_coords)
- # It is crucial to calculate uncertainty based on the sampled
- # prediction value for the points. Calculating uncertainties of the
- # coarse predictions first and sampling them for points leads to
- # incorrect results. To illustrate this: assume uncertainty func(
- # logits)=-abs(logits), a sampled point between two coarse
- # predictions with -1 and 1 logits has 0 logits, and therefore 0
- # uncertainty value. However, if we calculate uncertainties for the
- # coarse predictions first, both will have -1 uncertainty,
- # and sampled point will get -1 uncertainty.
- point_uncertainties = get_uncertainty(point_logits, labels)
- num_uncertain_points = int(importance_sample_ratio * num_points)
- num_random_points = num_points - num_uncertain_points
- idx = torch.topk(
- point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1]
- shift = num_sampled * torch.arange(
- batch_size, dtype=torch.long, device=mask_preds.device)
- idx += shift[:, None]
- point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view(
- batch_size, num_uncertain_points, 2)
- if num_random_points > 0:
- rand_roi_coords = torch.rand(
- batch_size, num_random_points, 2, device=mask_preds.device)
- point_coords = torch.cat((point_coords, rand_roi_coords), dim=1)
- return point_coords
|