12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import Optional, Tuple
- import torch
- from torch import Tensor
- from mmdet.structures.bbox import BaseBoxes
- def anchor_inside_flags(flat_anchors: Tensor,
- valid_flags: Tensor,
- img_shape: Tuple[int],
- allowed_border: int = 0) -> Tensor:
- """Check whether the anchors are inside the border.
- Args:
- flat_anchors (torch.Tensor): Flatten anchors, shape (n, 4).
- valid_flags (torch.Tensor): An existing valid flags of anchors.
- img_shape (tuple(int)): Shape of current image.
- allowed_border (int): The border to allow the valid anchor.
- Defaults to 0.
- Returns:
- torch.Tensor: Flags indicating whether the anchors are inside a \
- valid range.
- """
- img_h, img_w = img_shape[:2]
- if allowed_border >= 0:
- if isinstance(flat_anchors, BaseBoxes):
- inside_flags = valid_flags & \
- flat_anchors.is_inside([img_h, img_w],
- all_inside=True,
- allowed_border=allowed_border)
- else:
- inside_flags = valid_flags & \
- (flat_anchors[:, 0] >= -allowed_border) & \
- (flat_anchors[:, 1] >= -allowed_border) & \
- (flat_anchors[:, 2] < img_w + allowed_border) & \
- (flat_anchors[:, 3] < img_h + allowed_border)
- else:
- inside_flags = valid_flags
- return inside_flags
- def calc_region(bbox: Tensor,
- ratio: float,
- featmap_size: Optional[Tuple] = None) -> Tuple[int]:
- """Calculate a proportional bbox region.
- The bbox center are fixed and the new h' and w' is h * ratio and w * ratio.
- Args:
- bbox (Tensor): Bboxes to calculate regions, shape (n, 4).
- ratio (float): Ratio of the output region.
- featmap_size (tuple, Optional): Feature map size in (height, width)
- order used for clipping the boundary. Defaults to None.
- Returns:
- tuple: x1, y1, x2, y2
- """
- x1 = torch.round((1 - ratio) * bbox[0] + ratio * bbox[2]).long()
- y1 = torch.round((1 - ratio) * bbox[1] + ratio * bbox[3]).long()
- x2 = torch.round(ratio * bbox[0] + (1 - ratio) * bbox[2]).long()
- y2 = torch.round(ratio * bbox[1] + (1 - ratio) * bbox[3]).long()
- if featmap_size is not None:
- x1 = x1.clamp(min=0, max=featmap_size[1])
- y1 = y1.clamp(min=0, max=featmap_size[0])
- x2 = x2.clamp(min=0, max=featmap_size[1])
- y2 = y2.clamp(min=0, max=featmap_size[0])
- return (x1, y1, x2, y2)
|