123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236 |
- # Copyright (c) OpenMMLab. All rights reserved.
- # Modified from https://github.com/facebookresearch/detectron2/tree/master/projects/PointRend # noqa
- from typing import List, Tuple
- import torch
- import torch.nn.functional as F
- from mmcv.ops import point_sample, rel_roi_point_to_rel_img_point
- from torch import Tensor
- from mmdet.registry import MODELS
- from mmdet.structures.bbox import bbox2roi
- from mmdet.utils import ConfigType, InstanceList
- from ..task_modules.samplers import SamplingResult
- from ..utils import empty_instances
- from .standard_roi_head import StandardRoIHead
- @MODELS.register_module()
- class PointRendRoIHead(StandardRoIHead):
- """`PointRend <https://arxiv.org/abs/1912.08193>`_."""
- def __init__(self, point_head: ConfigType, *args, **kwargs) -> None:
- super().__init__(*args, **kwargs)
- assert self.with_bbox and self.with_mask
- self.init_point_head(point_head)
- def init_point_head(self, point_head: ConfigType) -> None:
- """Initialize ``point_head``"""
- self.point_head = MODELS.build(point_head)
- def mask_loss(self, x: Tuple[Tensor],
- sampling_results: List[SamplingResult], bbox_feats: Tensor,
- batch_gt_instances: InstanceList) -> dict:
- """Run forward function and calculate loss for mask head and point head
- in training."""
- mask_results = super().mask_loss(
- x=x,
- sampling_results=sampling_results,
- bbox_feats=bbox_feats,
- batch_gt_instances=batch_gt_instances)
- mask_point_results = self._mask_point_loss(
- x=x,
- sampling_results=sampling_results,
- mask_preds=mask_results['mask_preds'],
- batch_gt_instances=batch_gt_instances)
- mask_results['loss_mask'].update(
- loss_point=mask_point_results['loss_point'])
- return mask_results
- def _mask_point_loss(self, x: Tuple[Tensor],
- sampling_results: List[SamplingResult],
- mask_preds: Tensor,
- batch_gt_instances: InstanceList) -> dict:
- """Run forward function and calculate loss for point head in
- training."""
- pos_labels = torch.cat([res.pos_gt_labels for res in sampling_results])
- rel_roi_points = self.point_head.get_roi_rel_points_train(
- mask_preds, pos_labels, cfg=self.train_cfg)
- rois = bbox2roi([res.pos_bboxes for res in sampling_results])
- fine_grained_point_feats = self._get_fine_grained_point_feats(
- x, rois, rel_roi_points)
- coarse_point_feats = point_sample(mask_preds, rel_roi_points)
- mask_point_pred = self.point_head(fine_grained_point_feats,
- coarse_point_feats)
- loss_and_target = self.point_head.loss_and_target(
- point_pred=mask_point_pred,
- rel_roi_points=rel_roi_points,
- sampling_results=sampling_results,
- batch_gt_instances=batch_gt_instances,
- cfg=self.train_cfg)
- return loss_and_target
- def _mask_point_forward_test(self, x: Tuple[Tensor], rois: Tensor,
- label_preds: Tensor,
- mask_preds: Tensor) -> Tensor:
- """Mask refining process with point head in testing.
- Args:
- x (tuple[Tensor]): Feature maps of all scale level.
- rois (Tensor): shape (num_rois, 5).
- label_preds (Tensor): The predication class for each rois.
- mask_preds (Tensor): The predication coarse masks of
- shape (num_rois, num_classes, small_size, small_size).
- Returns:
- Tensor: The refined masks of shape (num_rois, num_classes,
- large_size, large_size).
- """
- refined_mask_pred = mask_preds.clone()
- for subdivision_step in range(self.test_cfg.subdivision_steps):
- refined_mask_pred = F.interpolate(
- refined_mask_pred,
- scale_factor=self.test_cfg.scale_factor,
- mode='bilinear',
- align_corners=False)
- # If `subdivision_num_points` is larger or equal to the
- # resolution of the next step, then we can skip this step
- num_rois, channels, mask_height, mask_width = \
- refined_mask_pred.shape
- if (self.test_cfg.subdivision_num_points >=
- self.test_cfg.scale_factor**2 * mask_height * mask_width
- and
- subdivision_step < self.test_cfg.subdivision_steps - 1):
- continue
- point_indices, rel_roi_points = \
- self.point_head.get_roi_rel_points_test(
- refined_mask_pred, label_preds, cfg=self.test_cfg)
- fine_grained_point_feats = self._get_fine_grained_point_feats(
- x=x, rois=rois, rel_roi_points=rel_roi_points)
- coarse_point_feats = point_sample(mask_preds, rel_roi_points)
- mask_point_pred = self.point_head(fine_grained_point_feats,
- coarse_point_feats)
- point_indices = point_indices.unsqueeze(1).expand(-1, channels, -1)
- refined_mask_pred = refined_mask_pred.reshape(
- num_rois, channels, mask_height * mask_width)
- refined_mask_pred = refined_mask_pred.scatter_(
- 2, point_indices, mask_point_pred)
- refined_mask_pred = refined_mask_pred.view(num_rois, channels,
- mask_height, mask_width)
- return refined_mask_pred
- def _get_fine_grained_point_feats(self, x: Tuple[Tensor], rois: Tensor,
- rel_roi_points: Tensor) -> Tensor:
- """Sample fine grained feats from each level feature map and
- concatenate them together.
- Args:
- x (tuple[Tensor]): Feature maps of all scale level.
- rois (Tensor): shape (num_rois, 5).
- rel_roi_points (Tensor): A tensor of shape (num_rois, num_points,
- 2) that contains [0, 1] x [0, 1] normalized coordinates of the
- most uncertain points from the [mask_height, mask_width] grid.
- Returns:
- Tensor: The fine grained features for each points,
- has shape (num_rois, feats_channels, num_points).
- """
- assert rois.shape[0] > 0, 'RoI is a empty tensor.'
- num_imgs = x[0].shape[0]
- fine_grained_feats = []
- for idx in range(self.mask_roi_extractor.num_inputs):
- feats = x[idx]
- spatial_scale = 1. / float(
- self.mask_roi_extractor.featmap_strides[idx])
- point_feats = []
- for batch_ind in range(num_imgs):
- # unravel batch dim
- feat = feats[batch_ind].unsqueeze(0)
- inds = (rois[:, 0].long() == batch_ind)
- if inds.any():
- rel_img_points = rel_roi_point_to_rel_img_point(
- rois=rois[inds],
- rel_roi_points=rel_roi_points[inds],
- img=feat.shape[2:],
- spatial_scale=spatial_scale).unsqueeze(0)
- point_feat = point_sample(feat, rel_img_points)
- point_feat = point_feat.squeeze(0).transpose(0, 1)
- point_feats.append(point_feat)
- fine_grained_feats.append(torch.cat(point_feats, dim=0))
- return torch.cat(fine_grained_feats, dim=1)
- def predict_mask(self,
- x: Tuple[Tensor],
- batch_img_metas: List[dict],
- results_list: InstanceList,
- rescale: bool = False) -> InstanceList:
- """Perform forward propagation of the mask head and predict detection
- results on the features of the upstream network.
- Args:
- x (tuple[Tensor]): Feature maps of all scale level.
- batch_img_metas (list[dict]): List of image information.
- results_list (list[:obj:`InstanceData`]): Detection results of
- each image.
- rescale (bool): If True, return boxes in original image space.
- Defaults to False.
- Returns:
- list[:obj:`InstanceData`]: Detection results of each image
- after the post process.
- Each item usually contains following keys.
- - scores (Tensor): Classification scores, has a shape
- (num_instance, )
- - labels (Tensor): Labels of bboxes, has a shape
- (num_instances, ).
- - bboxes (Tensor): Has a shape (num_instances, 4),
- the last dimension 4 arrange as (x1, y1, x2, y2).
- - masks (Tensor): Has a shape (num_instances, H, W).
- """
- # don't need to consider aug_test.
- bboxes = [res.bboxes for res in results_list]
- mask_rois = bbox2roi(bboxes)
- if mask_rois.shape[0] == 0:
- results_list = empty_instances(
- batch_img_metas,
- mask_rois.device,
- task_type='mask',
- instance_results=results_list,
- mask_thr_binary=self.test_cfg.mask_thr_binary)
- return results_list
- mask_results = self._mask_forward(x, mask_rois)
- mask_preds = mask_results['mask_preds']
- # split batch mask prediction back to each image
- num_mask_rois_per_img = [len(res) for res in results_list]
- mask_preds = mask_preds.split(num_mask_rois_per_img, 0)
- # refine mask_preds
- mask_rois = mask_rois.split(num_mask_rois_per_img, 0)
- mask_preds_refined = []
- for i in range(len(batch_img_metas)):
- labels = results_list[i].labels
- x_i = [xx[[i]] for xx in x]
- mask_rois_i = mask_rois[i]
- mask_rois_i[:, 0] = 0
- mask_pred_i = self._mask_point_forward_test(
- x_i, mask_rois_i, labels, mask_preds[i])
- mask_preds_refined.append(mask_pred_i)
- # TODO: Handle the case where rescale is false
- results_list = self.mask_head.predict_by_feat(
- mask_preds=mask_preds_refined,
- results_list=results_list,
- batch_img_metas=batch_img_metas,
- rcnn_test_cfg=self.test_cfg,
- rescale=rescale)
- return results_list
|