123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import Optional
- import torch.nn as nn
- import torch.nn.functional as F
- from torch import Tensor
- from mmdet.registry import MODELS
- from .utils import weighted_loss
- @weighted_loss
- def mse_loss(pred: Tensor, target: Tensor) -> Tensor:
- """A Wrapper of MSE loss.
- Args:
- pred (Tensor): The prediction.
- target (Tensor): The learning target of the prediction.
- Returns:
- Tensor: loss Tensor
- """
- return F.mse_loss(pred, target, reduction='none')
- @MODELS.register_module()
- class MSELoss(nn.Module):
- """MSELoss.
- Args:
- reduction (str, optional): The method that reduces the loss to a
- scalar. Options are "none", "mean" and "sum".
- loss_weight (float, optional): The weight of the loss. Defaults to 1.0
- """
- def __init__(self,
- reduction: str = 'mean',
- loss_weight: float = 1.0) -> None:
- super().__init__()
- self.reduction = reduction
- self.loss_weight = loss_weight
- def forward(self,
- pred: Tensor,
- target: Tensor,
- weight: Optional[Tensor] = None,
- avg_factor: Optional[int] = None,
- reduction_override: Optional[str] = None) -> Tensor:
- """Forward function of loss.
- Args:
- pred (Tensor): The prediction.
- target (Tensor): The learning target of the prediction.
- weight (Tensor, optional): Weight of the loss for each
- prediction. Defaults to None.
- avg_factor (int, optional): Average factor that is used to average
- the loss. Defaults to None.
- reduction_override (str, optional): The reduction method used to
- override the original reduction method of the loss.
- Defaults to None.
- Returns:
- Tensor: The calculated loss.
- """
- assert reduction_override in (None, 'none', 'mean', 'sum')
- reduction = (
- reduction_override if reduction_override else self.reduction)
- loss = self.loss_weight * mse_loss(
- pred, target, weight, reduction=reduction, avg_factor=avg_factor)
- return loss
|