1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import torch.nn as nn
- def accuracy(pred, target, topk=1, thresh=None):
- """Calculate accuracy according to the prediction and target.
- Args:
- pred (torch.Tensor): The model prediction, shape (N, num_class)
- target (torch.Tensor): The target of each prediction, shape (N, )
- topk (int | tuple[int], optional): If the predictions in ``topk``
- matches the target, the predictions will be regarded as
- correct ones. Defaults to 1.
- thresh (float, optional): If not None, predictions with scores under
- this threshold are considered incorrect. Default to None.
- Returns:
- float | tuple[float]: If the input ``topk`` is a single integer,
- the function will return a single float as accuracy. If
- ``topk`` is a tuple containing multiple integers, the
- function will return a tuple containing accuracies of
- each ``topk`` number.
- """
- assert isinstance(topk, (int, tuple))
- if isinstance(topk, int):
- topk = (topk, )
- return_single = True
- else:
- return_single = False
- maxk = max(topk)
- if pred.size(0) == 0:
- accu = [pred.new_tensor(0.) for i in range(len(topk))]
- return accu[0] if return_single else accu
- assert pred.ndim == 2 and target.ndim == 1
- assert pred.size(0) == target.size(0)
- assert maxk <= pred.size(1), \
- f'maxk {maxk} exceeds pred dimension {pred.size(1)}'
- pred_value, pred_label = pred.topk(maxk, dim=1)
- pred_label = pred_label.t() # transpose to shape (maxk, N)
- correct = pred_label.eq(target.view(1, -1).expand_as(pred_label))
- if thresh is not None:
- # Only prediction values larger than thresh are counted as correct
- correct = correct & (pred_value > thresh).t()
- res = []
- for k in topk:
- correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
- res.append(correct_k.mul_(100.0 / pred.size(0)))
- return res[0] if return_single else res
- class Accuracy(nn.Module):
- def __init__(self, topk=(1, ), thresh=None):
- """Module to calculate the accuracy.
- Args:
- topk (tuple, optional): The criterion used to calculate the
- accuracy. Defaults to (1,).
- thresh (float, optional): If not None, predictions with scores
- under this threshold are considered incorrect. Default to None.
- """
- super().__init__()
- self.topk = topk
- self.thresh = thresh
- def forward(self, pred, target):
- """Forward function to calculate accuracy.
- Args:
- pred (torch.Tensor): Prediction of models.
- target (torch.Tensor): Target for each prediction.
- Returns:
- tuple[float]: The accuracies under different topk criterions.
- """
- return accuracy(pred, target, self.topk, self.thresh)
|