123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import Dict, List, Optional, Sequence, Tuple
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule
- from torch import Tensor
- from mmdet.registry import MODELS, TASK_UTILS
- from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptInstanceList
- from ..losses import smooth_l1_loss
- from ..task_modules.samplers import PseudoSampler
- from ..utils import multi_apply
- from .anchor_head import AnchorHead
- # TODO: add loss evaluator for SSD
- @MODELS.register_module()
- class SSDHead(AnchorHead):
- """Implementation of `SSD head <https://arxiv.org/abs/1512.02325>`_
- Args:
- num_classes (int): Number of categories excluding the background
- category.
- in_channels (Sequence[int]): Number of channels in the input feature
- map.
- stacked_convs (int): Number of conv layers in cls and reg tower.
- Defaults to 0.
- feat_channels (int): Number of hidden channels when stacked_convs
- > 0. Defaults to 256.
- use_depthwise (bool): Whether to use DepthwiseSeparableConv.
- Defaults to False.
- conv_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
- and config conv layer. Defaults to None.
- norm_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
- and config norm layer. Defaults to None.
- act_cfg (:obj:`ConfigDict` or dict, Optional): Dictionary to construct
- and config activation layer. Defaults to None.
- anchor_generator (:obj:`ConfigDict` or dict): Config dict for anchor
- generator.
- bbox_coder (:obj:`ConfigDict` or dict): Config of bounding box coder.
- reg_decoded_bbox (bool): If true, the regression loss would be
- applied directly on decoded bounding boxes, converting both
- the predicted boxes and regression targets to absolute
- coordinates format. Defaults to False. It should be `True` when
- using `IoULoss`, `GIoULoss`, or `DIoULoss` in the bbox head.
- train_cfg (:obj:`ConfigDict` or dict, Optional): Training config of
- anchor head.
- test_cfg (:obj:`ConfigDict` or dict, Optional): Testing config of
- anchor head.
- init_cfg (:obj:`ConfigDict` or dict or list[:obj:`ConfigDict` or \
- dict], Optional): Initialization config dict.
- """ # noqa: W605
- def __init__(
- self,
- num_classes: int = 80,
- in_channels: Sequence[int] = (512, 1024, 512, 256, 256, 256),
- stacked_convs: int = 0,
- feat_channels: int = 256,
- use_depthwise: bool = False,
- conv_cfg: Optional[ConfigType] = None,
- norm_cfg: Optional[ConfigType] = None,
- act_cfg: Optional[ConfigType] = None,
- anchor_generator: ConfigType = dict(
- type='SSDAnchorGenerator',
- scale_major=False,
- input_size=300,
- strides=[8, 16, 32, 64, 100, 300],
- ratios=([2], [2, 3], [2, 3], [2, 3], [2], [2]),
- basesize_ratio_range=(0.1, 0.9)),
- bbox_coder: ConfigType = dict(
- type='DeltaXYWHBBoxCoder',
- clip_border=True,
- target_means=[.0, .0, .0, .0],
- target_stds=[1.0, 1.0, 1.0, 1.0],
- ),
- reg_decoded_bbox: bool = False,
- train_cfg: Optional[ConfigType] = None,
- test_cfg: Optional[ConfigType] = None,
- init_cfg: MultiConfig = dict(
- type='Xavier', layer='Conv2d', distribution='uniform', bias=0)
- ) -> None:
- super(AnchorHead, self).__init__(init_cfg=init_cfg)
- self.num_classes = num_classes
- self.in_channels = in_channels
- self.stacked_convs = stacked_convs
- self.feat_channels = feat_channels
- self.use_depthwise = use_depthwise
- self.conv_cfg = conv_cfg
- self.norm_cfg = norm_cfg
- self.act_cfg = act_cfg
- self.cls_out_channels = num_classes + 1 # add background class
- self.prior_generator = TASK_UTILS.build(anchor_generator)
- # Usually the numbers of anchors for each level are the same
- # except SSD detectors. So it is an int in the most dense
- # heads but a list of int in SSDHead
- self.num_base_priors = self.prior_generator.num_base_priors
- self._init_layers()
- self.bbox_coder = TASK_UTILS.build(bbox_coder)
- self.reg_decoded_bbox = reg_decoded_bbox
- self.use_sigmoid_cls = False
- self.cls_focal_loss = False
- self.train_cfg = train_cfg
- self.test_cfg = test_cfg
- if self.train_cfg:
- self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
- if self.train_cfg.get('sampler', None) is not None:
- self.sampler = TASK_UTILS.build(
- self.train_cfg['sampler'], default_args=dict(context=self))
- else:
- self.sampler = PseudoSampler(context=self)
- def _init_layers(self) -> None:
- """Initialize layers of the head."""
- self.cls_convs = nn.ModuleList()
- self.reg_convs = nn.ModuleList()
- # TODO: Use registry to choose ConvModule type
- conv = DepthwiseSeparableConvModule \
- if self.use_depthwise else ConvModule
- for channel, num_base_priors in zip(self.in_channels,
- self.num_base_priors):
- cls_layers = []
- reg_layers = []
- in_channel = channel
- # build stacked conv tower, not used in default ssd
- for i in range(self.stacked_convs):
- cls_layers.append(
- conv(
- in_channel,
- self.feat_channels,
- 3,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg))
- reg_layers.append(
- conv(
- in_channel,
- self.feat_channels,
- 3,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg))
- in_channel = self.feat_channels
- # SSD-Lite head
- if self.use_depthwise:
- cls_layers.append(
- ConvModule(
- in_channel,
- in_channel,
- 3,
- padding=1,
- groups=in_channel,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg))
- reg_layers.append(
- ConvModule(
- in_channel,
- in_channel,
- 3,
- padding=1,
- groups=in_channel,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg))
- cls_layers.append(
- nn.Conv2d(
- in_channel,
- num_base_priors * self.cls_out_channels,
- kernel_size=1 if self.use_depthwise else 3,
- padding=0 if self.use_depthwise else 1))
- reg_layers.append(
- nn.Conv2d(
- in_channel,
- num_base_priors * 4,
- kernel_size=1 if self.use_depthwise else 3,
- padding=0 if self.use_depthwise else 1))
- self.cls_convs.append(nn.Sequential(*cls_layers))
- self.reg_convs.append(nn.Sequential(*reg_layers))
- def forward(self, x: Tuple[Tensor]) -> Tuple[List[Tensor], List[Tensor]]:
- """Forward features from the upstream network.
- Args:
- x (tuple[Tensor]): Features from the upstream network, each is
- a 4D-tensor.
- Returns:
- tuple[list[Tensor], list[Tensor]]: A tuple of cls_scores list and
- bbox_preds list.
- - cls_scores (list[Tensor]): Classification scores for all scale \
- levels, each is a 4D-tensor, the channels number is \
- num_anchors * num_classes.
- - bbox_preds (list[Tensor]): Box energies / deltas for all scale \
- levels, each is a 4D-tensor, the channels number is \
- num_anchors * 4.
- """
- cls_scores = []
- bbox_preds = []
- for feat, reg_conv, cls_conv in zip(x, self.reg_convs, self.cls_convs):
- cls_scores.append(cls_conv(feat))
- bbox_preds.append(reg_conv(feat))
- return cls_scores, bbox_preds
- def loss_by_feat_single(self, cls_score: Tensor, bbox_pred: Tensor,
- anchor: Tensor, labels: Tensor,
- label_weights: Tensor, bbox_targets: Tensor,
- bbox_weights: Tensor,
- avg_factor: int) -> Tuple[Tensor, Tensor]:
- """Compute loss of a single image.
- Args:
- cls_score (Tensor): Box scores for eachimage
- Has shape (num_total_anchors, num_classes).
- bbox_pred (Tensor): Box energies / deltas for each image
- level with shape (num_total_anchors, 4).
- anchors (Tensor): Box reference for each scale level with shape
- (num_total_anchors, 4).
- labels (Tensor): Labels of each anchors with shape
- (num_total_anchors,).
- label_weights (Tensor): Label weights of each anchor with shape
- (num_total_anchors,)
- bbox_targets (Tensor): BBox regression targets of each anchor
- weight shape (num_total_anchors, 4).
- bbox_weights (Tensor): BBox regression loss weights of each anchor
- with shape (num_total_anchors, 4).
- avg_factor (int): Average factor that is used to average
- the loss. When using sampling method, avg_factor is usually
- the sum of positive and negative priors. When using
- `PseudoSampler`, `avg_factor` is usually equal to the number
- of positive priors.
- Returns:
- Tuple[Tensor, Tensor]: A tuple of cls loss and bbox loss of one
- feature map.
- """
- loss_cls_all = F.cross_entropy(
- cls_score, labels, reduction='none') * label_weights
- # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
- pos_inds = ((labels >= 0) & (labels < self.num_classes)).nonzero(
- as_tuple=False).reshape(-1)
- neg_inds = (labels == self.num_classes).nonzero(
- as_tuple=False).view(-1)
- num_pos_samples = pos_inds.size(0)
- num_neg_samples = self.train_cfg['neg_pos_ratio'] * num_pos_samples
- if num_neg_samples > neg_inds.size(0):
- num_neg_samples = neg_inds.size(0)
- topk_loss_cls_neg, _ = loss_cls_all[neg_inds].topk(num_neg_samples)
- loss_cls_pos = loss_cls_all[pos_inds].sum()
- loss_cls_neg = topk_loss_cls_neg.sum()
- loss_cls = (loss_cls_pos + loss_cls_neg) / avg_factor
- if self.reg_decoded_bbox:
- # When the regression loss (e.g. `IouLoss`, `GIouLoss`)
- # is applied directly on the decoded bounding boxes, it
- # decodes the already encoded coordinates to absolute format.
- bbox_pred = self.bbox_coder.decode(anchor, bbox_pred)
- loss_bbox = smooth_l1_loss(
- bbox_pred,
- bbox_targets,
- bbox_weights,
- beta=self.train_cfg['smoothl1_beta'],
- avg_factor=avg_factor)
- return loss_cls[None], loss_bbox
- def loss_by_feat(
- self,
- cls_scores: List[Tensor],
- bbox_preds: List[Tensor],
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict],
- batch_gt_instances_ignore: OptInstanceList = None
- ) -> Dict[str, List[Tensor]]:
- """Compute losses of the head.
- Args:
- cls_scores (list[Tensor]): Box scores for each scale level
- Has shape (N, num_anchors * num_classes, H, W)
- bbox_preds (list[Tensor]): Box energies / deltas for each scale
- level with shape (N, num_anchors * 4, H, W)
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes`` and ``labels``
- attributes.
- batch_img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
- Batch of gt_instances_ignore. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- Returns:
- dict[str, list[Tensor]]: A dictionary of loss components. the dict
- has components below:
- - loss_cls (list[Tensor]): A list containing each feature map \
- classification loss.
- - loss_bbox (list[Tensor]): A list containing each feature map \
- regression loss.
- """
- featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
- assert len(featmap_sizes) == self.prior_generator.num_levels
- device = cls_scores[0].device
- anchor_list, valid_flag_list = self.get_anchors(
- featmap_sizes, batch_img_metas, device=device)
- cls_reg_targets = self.get_targets(
- anchor_list,
- valid_flag_list,
- batch_gt_instances,
- batch_img_metas,
- batch_gt_instances_ignore=batch_gt_instances_ignore,
- unmap_outputs=True)
- (labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
- avg_factor) = cls_reg_targets
- num_images = len(batch_img_metas)
- all_cls_scores = torch.cat([
- s.permute(0, 2, 3, 1).reshape(
- num_images, -1, self.cls_out_channels) for s in cls_scores
- ], 1)
- all_labels = torch.cat(labels_list, -1).view(num_images, -1)
- all_label_weights = torch.cat(label_weights_list,
- -1).view(num_images, -1)
- all_bbox_preds = torch.cat([
- b.permute(0, 2, 3, 1).reshape(num_images, -1, 4)
- for b in bbox_preds
- ], -2)
- all_bbox_targets = torch.cat(bbox_targets_list,
- -2).view(num_images, -1, 4)
- all_bbox_weights = torch.cat(bbox_weights_list,
- -2).view(num_images, -1, 4)
- # concat all level anchors to a single tensor
- all_anchors = []
- for i in range(num_images):
- all_anchors.append(torch.cat(anchor_list[i]))
- losses_cls, losses_bbox = multi_apply(
- self.loss_by_feat_single,
- all_cls_scores,
- all_bbox_preds,
- all_anchors,
- all_labels,
- all_label_weights,
- all_bbox_targets,
- all_bbox_weights,
- avg_factor=avg_factor)
- return dict(loss_cls=losses_cls, loss_bbox=losses_bbox)
|