123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import warnings
- from typing import List, Optional, Tuple
- import mmcv
- import numpy as np
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from mmcv.cnn import ConvModule
- from mmengine.model import BaseModule
- from mmengine.structures import InstanceData
- from torch import Tensor
- from mmdet.models.utils.misc import floordiv
- from mmdet.registry import MODELS
- from mmdet.utils import ConfigType, InstanceList, MultiConfig, OptConfigType
- from ..layers import mask_matrix_nms
- from ..utils import center_of_mass, generate_coordinate, multi_apply
- from .solo_head import SOLOHead
- class MaskFeatModule(BaseModule):
- """SOLOv2 mask feature map branch used in `SOLOv2: Dynamic and Fast
- Instance Segmentation. <https://arxiv.org/pdf/2003.10152>`_
- Args:
- in_channels (int): Number of channels in the input feature map.
- feat_channels (int): Number of hidden channels of the mask feature
- map branch.
- start_level (int): The starting feature map level from RPN that
- will be used to predict the mask feature map.
- end_level (int): The ending feature map level from rpn that
- will be used to predict the mask feature map.
- out_channels (int): Number of output channels of the mask feature
- map branch. This is the channel count of the mask
- feature map that to be dynamically convolved with the predicted
- kernel.
- mask_stride (int): Downsample factor of the mask feature map output.
- Defaults to 4.
- conv_cfg (dict): Config dict for convolution layer. Default: None.
- norm_cfg (dict): Config dict for normalization layer. Default: None.
- init_cfg (dict or list[dict], optional): Initialization config dict.
- """
- def __init__(
- self,
- in_channels: int,
- feat_channels: int,
- start_level: int,
- end_level: int,
- out_channels: int,
- mask_stride: int = 4,
- conv_cfg: OptConfigType = None,
- norm_cfg: OptConfigType = None,
- init_cfg: MultiConfig = [
- dict(type='Normal', layer='Conv2d', std=0.01)
- ]
- ) -> None:
- super().__init__(init_cfg=init_cfg)
- self.in_channels = in_channels
- self.feat_channels = feat_channels
- self.start_level = start_level
- self.end_level = end_level
- self.mask_stride = mask_stride
- assert start_level >= 0 and end_level >= start_level
- self.out_channels = out_channels
- self.conv_cfg = conv_cfg
- self.norm_cfg = norm_cfg
- self._init_layers()
- self.fp16_enabled = False
- def _init_layers(self) -> None:
- """Initialize layers of the head."""
- self.convs_all_levels = nn.ModuleList()
- for i in range(self.start_level, self.end_level + 1):
- convs_per_level = nn.Sequential()
- if i == 0:
- convs_per_level.add_module(
- f'conv{i}',
- ConvModule(
- self.in_channels,
- self.feat_channels,
- 3,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- inplace=False))
- self.convs_all_levels.append(convs_per_level)
- continue
- for j in range(i):
- if j == 0:
- if i == self.end_level:
- chn = self.in_channels + 2
- else:
- chn = self.in_channels
- convs_per_level.add_module(
- f'conv{j}',
- ConvModule(
- chn,
- self.feat_channels,
- 3,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- inplace=False))
- convs_per_level.add_module(
- f'upsample{j}',
- nn.Upsample(
- scale_factor=2,
- mode='bilinear',
- align_corners=False))
- continue
- convs_per_level.add_module(
- f'conv{j}',
- ConvModule(
- self.feat_channels,
- self.feat_channels,
- 3,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- inplace=False))
- convs_per_level.add_module(
- f'upsample{j}',
- nn.Upsample(
- scale_factor=2, mode='bilinear', align_corners=False))
- self.convs_all_levels.append(convs_per_level)
- self.conv_pred = ConvModule(
- self.feat_channels,
- self.out_channels,
- 1,
- padding=0,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg)
- def forward(self, x: Tuple[Tensor]) -> Tensor:
- """Forward features from the upstream network.
- Args:
- x (tuple[Tensor]): Features from the upstream network, each is
- a 4D-tensor.
- Returns:
- Tensor: The predicted mask feature map.
- """
- inputs = x[self.start_level:self.end_level + 1]
- assert len(inputs) == (self.end_level - self.start_level + 1)
- feature_add_all_level = self.convs_all_levels[0](inputs[0])
- for i in range(1, len(inputs)):
- input_p = inputs[i]
- if i == len(inputs) - 1:
- coord_feat = generate_coordinate(input_p.size(),
- input_p.device)
- input_p = torch.cat([input_p, coord_feat], 1)
- feature_add_all_level = feature_add_all_level + \
- self.convs_all_levels[i](input_p)
- feature_pred = self.conv_pred(feature_add_all_level)
- return feature_pred
- @MODELS.register_module()
- class SOLOV2Head(SOLOHead):
- """SOLOv2 mask head used in `SOLOv2: Dynamic and Fast Instance
- Segmentation. <https://arxiv.org/pdf/2003.10152>`_
- Args:
- mask_feature_head (dict): Config of SOLOv2MaskFeatHead.
- dynamic_conv_size (int): Dynamic Conv kernel size. Defaults to 1.
- dcn_cfg (dict): Dcn conv configurations in kernel_convs and cls_conv.
- Defaults to None.
- dcn_apply_to_all_conv (bool): Whether to use dcn in every layer of
- kernel_convs and cls_convs, or only the last layer. It shall be set
- `True` for the normal version of SOLOv2 and `False` for the
- light-weight version. Defaults to True.
- init_cfg (dict or list[dict], optional): Initialization config dict.
- """
- def __init__(self,
- *args,
- mask_feature_head: ConfigType,
- dynamic_conv_size: int = 1,
- dcn_cfg: OptConfigType = None,
- dcn_apply_to_all_conv: bool = True,
- init_cfg: MultiConfig = [
- dict(type='Normal', layer='Conv2d', std=0.01),
- dict(
- type='Normal',
- std=0.01,
- bias_prob=0.01,
- override=dict(name='conv_cls'))
- ],
- **kwargs) -> None:
- assert dcn_cfg is None or isinstance(dcn_cfg, dict)
- self.dcn_cfg = dcn_cfg
- self.with_dcn = dcn_cfg is not None
- self.dcn_apply_to_all_conv = dcn_apply_to_all_conv
- self.dynamic_conv_size = dynamic_conv_size
- mask_out_channels = mask_feature_head.get('out_channels')
- self.kernel_out_channels = \
- mask_out_channels * self.dynamic_conv_size * self.dynamic_conv_size
- super().__init__(*args, init_cfg=init_cfg, **kwargs)
- # update the in_channels of mask_feature_head
- if mask_feature_head.get('in_channels', None) is not None:
- if mask_feature_head.in_channels != self.in_channels:
- warnings.warn('The `in_channels` of SOLOv2MaskFeatHead and '
- 'SOLOv2Head should be same, changing '
- 'mask_feature_head.in_channels to '
- f'{self.in_channels}')
- mask_feature_head.update(in_channels=self.in_channels)
- else:
- mask_feature_head.update(in_channels=self.in_channels)
- self.mask_feature_head = MaskFeatModule(**mask_feature_head)
- self.mask_stride = self.mask_feature_head.mask_stride
- self.fp16_enabled = False
- def _init_layers(self) -> None:
- """Initialize layers of the head."""
- self.cls_convs = nn.ModuleList()
- self.kernel_convs = nn.ModuleList()
- conv_cfg = None
- for i in range(self.stacked_convs):
- if self.with_dcn:
- if self.dcn_apply_to_all_conv:
- conv_cfg = self.dcn_cfg
- elif i == self.stacked_convs - 1:
- # light head
- conv_cfg = self.dcn_cfg
- chn = self.in_channels + 2 if i == 0 else self.feat_channels
- self.kernel_convs.append(
- ConvModule(
- chn,
- self.feat_channels,
- 3,
- stride=1,
- padding=1,
- conv_cfg=conv_cfg,
- norm_cfg=self.norm_cfg,
- bias=self.norm_cfg is None))
- chn = self.in_channels if i == 0 else self.feat_channels
- self.cls_convs.append(
- ConvModule(
- chn,
- self.feat_channels,
- 3,
- stride=1,
- padding=1,
- conv_cfg=conv_cfg,
- norm_cfg=self.norm_cfg,
- bias=self.norm_cfg is None))
- self.conv_cls = nn.Conv2d(
- self.feat_channels, self.cls_out_channels, 3, padding=1)
- self.conv_kernel = nn.Conv2d(
- self.feat_channels, self.kernel_out_channels, 3, padding=1)
- def forward(self, x):
- """Forward features from the upstream network.
- Args:
- x (tuple[Tensor]): Features from the upstream network, each is
- a 4D-tensor.
- Returns:
- tuple: A tuple of classification scores, mask prediction,
- and mask features.
- - mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel
- prediction. The kernel is used to generate instance
- segmentation masks by dynamic convolution. Each element in
- the list has shape
- (batch_size, kernel_out_channels, num_grids, num_grids).
- - mlvl_cls_preds (list[Tensor]): Multi-level scores. Each
- element in the list has shape
- (batch_size, num_classes, num_grids, num_grids).
- - mask_feats (Tensor): Unified mask feature map used to
- generate instance segmentation masks by dynamic convolution.
- Has shape (batch_size, mask_out_channels, h, w).
- """
- assert len(x) == self.num_levels
- mask_feats = self.mask_feature_head(x)
- ins_kernel_feats = self.resize_feats(x)
- mlvl_kernel_preds = []
- mlvl_cls_preds = []
- for i in range(self.num_levels):
- ins_kernel_feat = ins_kernel_feats[i]
- # ins branch
- # concat coord
- coord_feat = generate_coordinate(ins_kernel_feat.size(),
- ins_kernel_feat.device)
- ins_kernel_feat = torch.cat([ins_kernel_feat, coord_feat], 1)
- # kernel branch
- kernel_feat = ins_kernel_feat
- kernel_feat = F.interpolate(
- kernel_feat,
- size=self.num_grids[i],
- mode='bilinear',
- align_corners=False)
- cate_feat = kernel_feat[:, :-2, :, :]
- kernel_feat = kernel_feat.contiguous()
- for i, kernel_conv in enumerate(self.kernel_convs):
- kernel_feat = kernel_conv(kernel_feat)
- kernel_pred = self.conv_kernel(kernel_feat)
- # cate branch
- cate_feat = cate_feat.contiguous()
- for i, cls_conv in enumerate(self.cls_convs):
- cate_feat = cls_conv(cate_feat)
- cate_pred = self.conv_cls(cate_feat)
- mlvl_kernel_preds.append(kernel_pred)
- mlvl_cls_preds.append(cate_pred)
- return mlvl_kernel_preds, mlvl_cls_preds, mask_feats
- def _get_targets_single(self,
- gt_instances: InstanceData,
- featmap_sizes: Optional[list] = None) -> tuple:
- """Compute targets for predictions of single image.
- Args:
- gt_instances (:obj:`InstanceData`): Ground truth of instance
- annotations. It should includes ``bboxes``, ``labels``,
- and ``masks`` attributes.
- featmap_sizes (list[:obj:`torch.size`]): Size of each
- feature map from feature pyramid, each element
- means (feat_h, feat_w). Defaults to None.
- Returns:
- Tuple: Usually returns a tuple containing targets for predictions.
- - mlvl_pos_mask_targets (list[Tensor]): Each element represent
- the binary mask targets for positive points in this
- level, has shape (num_pos, out_h, out_w).
- - mlvl_labels (list[Tensor]): Each element is
- classification labels for all
- points in this level, has shape
- (num_grid, num_grid).
- - mlvl_pos_masks (list[Tensor]): Each element is
- a `BoolTensor` to represent whether the
- corresponding point in single level
- is positive, has shape (num_grid **2).
- - mlvl_pos_indexes (list[list]): Each element
- in the list contains the positive index in
- corresponding level, has shape (num_pos).
- """
- gt_labels = gt_instances.labels
- device = gt_labels.device
- gt_bboxes = gt_instances.bboxes
- gt_areas = torch.sqrt((gt_bboxes[:, 2] - gt_bboxes[:, 0]) *
- (gt_bboxes[:, 3] - gt_bboxes[:, 1]))
- gt_masks = gt_instances.masks.to_tensor(
- dtype=torch.bool, device=device)
- mlvl_pos_mask_targets = []
- mlvl_pos_indexes = []
- mlvl_labels = []
- mlvl_pos_masks = []
- for (lower_bound, upper_bound), num_grid \
- in zip(self.scale_ranges, self.num_grids):
- mask_target = []
- # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
- pos_index = []
- labels = torch.zeros([num_grid, num_grid],
- dtype=torch.int64,
- device=device) + self.num_classes
- pos_mask = torch.zeros([num_grid**2],
- dtype=torch.bool,
- device=device)
- gt_inds = ((gt_areas >= lower_bound) &
- (gt_areas <= upper_bound)).nonzero().flatten()
- if len(gt_inds) == 0:
- mlvl_pos_mask_targets.append(
- torch.zeros([0, featmap_sizes[0], featmap_sizes[1]],
- dtype=torch.uint8,
- device=device))
- mlvl_labels.append(labels)
- mlvl_pos_masks.append(pos_mask)
- mlvl_pos_indexes.append([])
- continue
- hit_gt_bboxes = gt_bboxes[gt_inds]
- hit_gt_labels = gt_labels[gt_inds]
- hit_gt_masks = gt_masks[gt_inds, ...]
- pos_w_ranges = 0.5 * (hit_gt_bboxes[:, 2] -
- hit_gt_bboxes[:, 0]) * self.pos_scale
- pos_h_ranges = 0.5 * (hit_gt_bboxes[:, 3] -
- hit_gt_bboxes[:, 1]) * self.pos_scale
- # Make sure hit_gt_masks has a value
- valid_mask_flags = hit_gt_masks.sum(dim=-1).sum(dim=-1) > 0
- for gt_mask, gt_label, pos_h_range, pos_w_range, \
- valid_mask_flag in \
- zip(hit_gt_masks, hit_gt_labels, pos_h_ranges,
- pos_w_ranges, valid_mask_flags):
- if not valid_mask_flag:
- continue
- upsampled_size = (featmap_sizes[0] * self.mask_stride,
- featmap_sizes[1] * self.mask_stride)
- center_h, center_w = center_of_mass(gt_mask)
- coord_w = int(
- floordiv((center_w / upsampled_size[1]), (1. / num_grid),
- rounding_mode='trunc'))
- coord_h = int(
- floordiv((center_h / upsampled_size[0]), (1. / num_grid),
- rounding_mode='trunc'))
- # left, top, right, down
- top_box = max(
- 0,
- int(
- floordiv(
- (center_h - pos_h_range) / upsampled_size[0],
- (1. / num_grid),
- rounding_mode='trunc')))
- down_box = min(
- num_grid - 1,
- int(
- floordiv(
- (center_h + pos_h_range) / upsampled_size[0],
- (1. / num_grid),
- rounding_mode='trunc')))
- left_box = max(
- 0,
- int(
- floordiv(
- (center_w - pos_w_range) / upsampled_size[1],
- (1. / num_grid),
- rounding_mode='trunc')))
- right_box = min(
- num_grid - 1,
- int(
- floordiv(
- (center_w + pos_w_range) / upsampled_size[1],
- (1. / num_grid),
- rounding_mode='trunc')))
- top = max(top_box, coord_h - 1)
- down = min(down_box, coord_h + 1)
- left = max(coord_w - 1, left_box)
- right = min(right_box, coord_w + 1)
- labels[top:(down + 1), left:(right + 1)] = gt_label
- # ins
- gt_mask = np.uint8(gt_mask.cpu().numpy())
- # Follow the original implementation, F.interpolate is
- # different from cv2 and opencv
- gt_mask = mmcv.imrescale(gt_mask, scale=1. / self.mask_stride)
- gt_mask = torch.from_numpy(gt_mask).to(device=device)
- for i in range(top, down + 1):
- for j in range(left, right + 1):
- index = int(i * num_grid + j)
- this_mask_target = torch.zeros(
- [featmap_sizes[0], featmap_sizes[1]],
- dtype=torch.uint8,
- device=device)
- this_mask_target[:gt_mask.shape[0], :gt_mask.
- shape[1]] = gt_mask
- mask_target.append(this_mask_target)
- pos_mask[index] = True
- pos_index.append(index)
- if len(mask_target) == 0:
- mask_target = torch.zeros(
- [0, featmap_sizes[0], featmap_sizes[1]],
- dtype=torch.uint8,
- device=device)
- else:
- mask_target = torch.stack(mask_target, 0)
- mlvl_pos_mask_targets.append(mask_target)
- mlvl_labels.append(labels)
- mlvl_pos_masks.append(pos_mask)
- mlvl_pos_indexes.append(pos_index)
- return (mlvl_pos_mask_targets, mlvl_labels, mlvl_pos_masks,
- mlvl_pos_indexes)
- def loss_by_feat(self, mlvl_kernel_preds: List[Tensor],
- mlvl_cls_preds: List[Tensor], mask_feats: Tensor,
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict], **kwargs) -> dict:
- """Calculate the loss based on the features extracted by the mask head.
- Args:
- mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel
- prediction. The kernel is used to generate instance
- segmentation masks by dynamic convolution. Each element in the
- list has shape
- (batch_size, kernel_out_channels, num_grids, num_grids).
- mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element
- in the list has shape
- (batch_size, num_classes, num_grids, num_grids).
- mask_feats (Tensor): Unified mask feature map used to generate
- instance segmentation masks by dynamic convolution. Has shape
- (batch_size, mask_out_channels, h, w).
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes``, ``masks``,
- and ``labels`` attributes.
- batch_img_metas (list[dict]): Meta information of multiple images.
- Returns:
- dict[str, Tensor]: A dictionary of loss components.
- """
- featmap_sizes = mask_feats.size()[-2:]
- pos_mask_targets, labels, pos_masks, pos_indexes = multi_apply(
- self._get_targets_single,
- batch_gt_instances,
- featmap_sizes=featmap_sizes)
- mlvl_mask_targets = [
- torch.cat(lvl_mask_targets, 0)
- for lvl_mask_targets in zip(*pos_mask_targets)
- ]
- mlvl_pos_kernel_preds = []
- for lvl_kernel_preds, lvl_pos_indexes in zip(mlvl_kernel_preds,
- zip(*pos_indexes)):
- lvl_pos_kernel_preds = []
- for img_lvl_kernel_preds, img_lvl_pos_indexes in zip(
- lvl_kernel_preds, lvl_pos_indexes):
- img_lvl_pos_kernel_preds = img_lvl_kernel_preds.view(
- img_lvl_kernel_preds.shape[0], -1)[:, img_lvl_pos_indexes]
- lvl_pos_kernel_preds.append(img_lvl_pos_kernel_preds)
- mlvl_pos_kernel_preds.append(lvl_pos_kernel_preds)
- # make multilevel mlvl_mask_pred
- mlvl_mask_preds = []
- for lvl_pos_kernel_preds in mlvl_pos_kernel_preds:
- lvl_mask_preds = []
- for img_id, img_lvl_pos_kernel_pred in enumerate(
- lvl_pos_kernel_preds):
- if img_lvl_pos_kernel_pred.size()[-1] == 0:
- continue
- img_mask_feats = mask_feats[[img_id]]
- h, w = img_mask_feats.shape[-2:]
- num_kernel = img_lvl_pos_kernel_pred.shape[1]
- img_lvl_mask_pred = F.conv2d(
- img_mask_feats,
- img_lvl_pos_kernel_pred.permute(1, 0).view(
- num_kernel, -1, self.dynamic_conv_size,
- self.dynamic_conv_size),
- stride=1).view(-1, h, w)
- lvl_mask_preds.append(img_lvl_mask_pred)
- if len(lvl_mask_preds) == 0:
- lvl_mask_preds = None
- else:
- lvl_mask_preds = torch.cat(lvl_mask_preds, 0)
- mlvl_mask_preds.append(lvl_mask_preds)
- # dice loss
- num_pos = 0
- for img_pos_masks in pos_masks:
- for lvl_img_pos_masks in img_pos_masks:
- # Fix `Tensor` object has no attribute `count_nonzero()`
- # in PyTorch 1.6, the type of `lvl_img_pos_masks`
- # should be `torch.bool`.
- num_pos += lvl_img_pos_masks.nonzero().numel()
- loss_mask = []
- for lvl_mask_preds, lvl_mask_targets in zip(mlvl_mask_preds,
- mlvl_mask_targets):
- if lvl_mask_preds is None:
- continue
- loss_mask.append(
- self.loss_mask(
- lvl_mask_preds,
- lvl_mask_targets,
- reduction_override='none'))
- if num_pos > 0:
- loss_mask = torch.cat(loss_mask).sum() / num_pos
- else:
- loss_mask = mask_feats.sum() * 0
- # cate
- flatten_labels = [
- torch.cat(
- [img_lvl_labels.flatten() for img_lvl_labels in lvl_labels])
- for lvl_labels in zip(*labels)
- ]
- flatten_labels = torch.cat(flatten_labels)
- flatten_cls_preds = [
- lvl_cls_preds.permute(0, 2, 3, 1).reshape(-1, self.num_classes)
- for lvl_cls_preds in mlvl_cls_preds
- ]
- flatten_cls_preds = torch.cat(flatten_cls_preds)
- loss_cls = self.loss_cls(
- flatten_cls_preds, flatten_labels, avg_factor=num_pos + 1)
- return dict(loss_mask=loss_mask, loss_cls=loss_cls)
- def predict_by_feat(self, mlvl_kernel_preds: List[Tensor],
- mlvl_cls_scores: List[Tensor], mask_feats: Tensor,
- batch_img_metas: List[dict], **kwargs) -> InstanceList:
- """Transform a batch of output features extracted from the head into
- mask results.
- Args:
- mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel
- prediction. The kernel is used to generate instance
- segmentation masks by dynamic convolution. Each element in the
- list has shape
- (batch_size, kernel_out_channels, num_grids, num_grids).
- mlvl_cls_scores (list[Tensor]): Multi-level scores. Each element
- in the list has shape
- (batch_size, num_classes, num_grids, num_grids).
- mask_feats (Tensor): Unified mask feature map used to generate
- instance segmentation masks by dynamic convolution. Has shape
- (batch_size, mask_out_channels, h, w).
- batch_img_metas (list[dict]): Meta information of all images.
- Returns:
- list[:obj:`InstanceData`]: Processed results of multiple
- images.Each :obj:`InstanceData` usually contains
- following keys.
- - scores (Tensor): Classification scores, has shape
- (num_instance,).
- - labels (Tensor): Has shape (num_instances,).
- - masks (Tensor): Processed mask results, has
- shape (num_instances, h, w).
- """
- num_levels = len(mlvl_cls_scores)
- assert len(mlvl_kernel_preds) == len(mlvl_cls_scores)
- for lvl in range(num_levels):
- cls_scores = mlvl_cls_scores[lvl]
- cls_scores = cls_scores.sigmoid()
- local_max = F.max_pool2d(cls_scores, 2, stride=1, padding=1)
- keep_mask = local_max[:, :, :-1, :-1] == cls_scores
- cls_scores = cls_scores * keep_mask
- mlvl_cls_scores[lvl] = cls_scores.permute(0, 2, 3, 1)
- result_list = []
- for img_id in range(len(batch_img_metas)):
- img_cls_pred = [
- mlvl_cls_scores[lvl][img_id].view(-1, self.cls_out_channels)
- for lvl in range(num_levels)
- ]
- img_mask_feats = mask_feats[[img_id]]
- img_kernel_pred = [
- mlvl_kernel_preds[lvl][img_id].permute(1, 2, 0).view(
- -1, self.kernel_out_channels) for lvl in range(num_levels)
- ]
- img_cls_pred = torch.cat(img_cls_pred, dim=0)
- img_kernel_pred = torch.cat(img_kernel_pred, dim=0)
- result = self._predict_by_feat_single(
- img_kernel_pred,
- img_cls_pred,
- img_mask_feats,
- img_meta=batch_img_metas[img_id])
- result_list.append(result)
- return result_list
- def _predict_by_feat_single(self,
- kernel_preds: Tensor,
- cls_scores: Tensor,
- mask_feats: Tensor,
- img_meta: dict,
- cfg: OptConfigType = None) -> InstanceData:
- """Transform a single image's features extracted from the head into
- mask results.
- Args:
- kernel_preds (Tensor): Dynamic kernel prediction of all points
- in single image, has shape
- (num_points, kernel_out_channels).
- cls_scores (Tensor): Classification score of all points
- in single image, has shape (num_points, num_classes).
- mask_feats (Tensor): Mask prediction of all points in
- single image, has shape (num_points, feat_h, feat_w).
- img_meta (dict): Meta information of corresponding image.
- cfg (dict, optional): Config used in test phase.
- Defaults to None.
- Returns:
- :obj:`InstanceData`: Processed results of single image.
- it usually contains following keys.
- - scores (Tensor): Classification scores, has shape
- (num_instance,).
- - labels (Tensor): Has shape (num_instances,).
- - masks (Tensor): Processed mask results, has
- shape (num_instances, h, w).
- """
- def empty_results(cls_scores, ori_shape):
- """Generate a empty results."""
- results = InstanceData()
- results.scores = cls_scores.new_ones(0)
- results.masks = cls_scores.new_zeros(0, *ori_shape)
- results.labels = cls_scores.new_ones(0)
- results.bboxes = cls_scores.new_zeros(0, 4)
- return results
- cfg = self.test_cfg if cfg is None else cfg
- assert len(kernel_preds) == len(cls_scores)
- featmap_size = mask_feats.size()[-2:]
- # overall info
- h, w = img_meta['img_shape'][:2]
- upsampled_size = (featmap_size[0] * self.mask_stride,
- featmap_size[1] * self.mask_stride)
- # process.
- score_mask = (cls_scores > cfg.score_thr)
- cls_scores = cls_scores[score_mask]
- if len(cls_scores) == 0:
- return empty_results(cls_scores, img_meta['ori_shape'][:2])
- # cate_labels & kernel_preds
- inds = score_mask.nonzero()
- cls_labels = inds[:, 1]
- kernel_preds = kernel_preds[inds[:, 0]]
- # trans vector.
- lvl_interval = cls_labels.new_tensor(self.num_grids).pow(2).cumsum(0)
- strides = kernel_preds.new_ones(lvl_interval[-1])
- strides[:lvl_interval[0]] *= self.strides[0]
- for lvl in range(1, self.num_levels):
- strides[lvl_interval[lvl -
- 1]:lvl_interval[lvl]] *= self.strides[lvl]
- strides = strides[inds[:, 0]]
- # mask encoding.
- kernel_preds = kernel_preds.view(
- kernel_preds.size(0), -1, self.dynamic_conv_size,
- self.dynamic_conv_size)
- mask_preds = F.conv2d(
- mask_feats, kernel_preds, stride=1).squeeze(0).sigmoid()
- # mask.
- masks = mask_preds > cfg.mask_thr
- sum_masks = masks.sum((1, 2)).float()
- keep = sum_masks > strides
- if keep.sum() == 0:
- return empty_results(cls_scores, img_meta['ori_shape'][:2])
- masks = masks[keep]
- mask_preds = mask_preds[keep]
- sum_masks = sum_masks[keep]
- cls_scores = cls_scores[keep]
- cls_labels = cls_labels[keep]
- # maskness.
- mask_scores = (mask_preds * masks).sum((1, 2)) / sum_masks
- cls_scores *= mask_scores
- scores, labels, _, keep_inds = mask_matrix_nms(
- masks,
- cls_labels,
- cls_scores,
- mask_area=sum_masks,
- nms_pre=cfg.nms_pre,
- max_num=cfg.max_per_img,
- kernel=cfg.kernel,
- sigma=cfg.sigma,
- filter_thr=cfg.filter_thr)
- if len(keep_inds) == 0:
- return empty_results(cls_scores, img_meta['ori_shape'][:2])
- mask_preds = mask_preds[keep_inds]
- mask_preds = F.interpolate(
- mask_preds.unsqueeze(0),
- size=upsampled_size,
- mode='bilinear',
- align_corners=False)[:, :, :h, :w]
- mask_preds = F.interpolate(
- mask_preds,
- size=img_meta['ori_shape'][:2],
- mode='bilinear',
- align_corners=False).squeeze(0)
- masks = mask_preds > cfg.mask_thr
- results = InstanceData()
- results.masks = masks
- results.labels = labels
- results.scores = scores
- # create an empty bbox in InstanceData to avoid bugs when
- # calculating metrics.
- results.bboxes = results.scores.new_zeros(len(scores), 4)
- return results
|