123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import List, Tuple
- import torch
- from torch import Tensor
- from mmdet.registry import MODELS
- from mmdet.structures import SampleList
- from mmdet.structures.bbox import bbox_overlaps
- from mmdet.utils import ConfigType, InstanceList, OptInstanceList, reduce_mean
- from ..utils import multi_apply, unpack_gt_instances
- from .gfl_head import GFLHead
- @MODELS.register_module()
- class LDHead(GFLHead):
- """Localization distillation Head. (Short description)
- It utilizes the learned bbox distributions to transfer the localization
- dark knowledge from teacher to student. Original paper: `Localization
- Distillation for Object Detection. <https://arxiv.org/abs/2102.12252>`_
- Args:
- num_classes (int): Number of categories excluding the background
- category.
- in_channels (int): Number of channels in the input feature map.
- loss_ld (:obj:`ConfigDict` or dict): Config of Localization
- Distillation Loss (LD), T is the temperature for distillation.
- """
- def __init__(self,
- num_classes: int,
- in_channels: int,
- loss_ld: ConfigType = dict(
- type='LocalizationDistillationLoss',
- loss_weight=0.25,
- T=10),
- **kwargs) -> dict:
- super().__init__(
- num_classes=num_classes, in_channels=in_channels, **kwargs)
- self.loss_ld = MODELS.build(loss_ld)
- def loss_by_feat_single(self, anchors: Tensor, cls_score: Tensor,
- bbox_pred: Tensor, labels: Tensor,
- label_weights: Tensor, bbox_targets: Tensor,
- stride: Tuple[int], soft_targets: Tensor,
- avg_factor: int):
- """Calculate the loss of a single scale level based on the features
- extracted by the detection head.
- Args:
- anchors (Tensor): Box reference for each scale level with shape
- (N, num_total_anchors, 4).
- cls_score (Tensor): Cls and quality joint scores for each scale
- level has shape (N, num_classes, H, W).
- bbox_pred (Tensor): Box distribution logits for each scale
- level with shape (N, 4*(n+1), H, W), n is max value of integral
- set.
- labels (Tensor): Labels of each anchors with shape
- (N, num_total_anchors).
- label_weights (Tensor): Label weights of each anchor with shape
- (N, num_total_anchors)
- bbox_targets (Tensor): BBox regression targets of each anchor
- weight shape (N, num_total_anchors, 4).
- stride (tuple): Stride in this scale level.
- soft_targets (Tensor): Soft BBox regression targets.
- avg_factor (int): Average factor that is used to average
- the loss. When using sampling method, avg_factor is usually
- the sum of positive and negative priors. When using
- `PseudoSampler`, `avg_factor` is usually equal to the number
- of positive priors.
- Returns:
- dict[tuple, Tensor]: Loss components and weight targets.
- """
- assert stride[0] == stride[1], 'h stride is not equal to w stride!'
- anchors = anchors.reshape(-1, 4)
- cls_score = cls_score.permute(0, 2, 3,
- 1).reshape(-1, self.cls_out_channels)
- bbox_pred = bbox_pred.permute(0, 2, 3,
- 1).reshape(-1, 4 * (self.reg_max + 1))
- soft_targets = soft_targets.permute(0, 2, 3,
- 1).reshape(-1,
- 4 * (self.reg_max + 1))
- bbox_targets = bbox_targets.reshape(-1, 4)
- labels = labels.reshape(-1)
- label_weights = label_weights.reshape(-1)
- # FG cat_id: [0, num_classes -1], BG cat_id: num_classes
- bg_class_ind = self.num_classes
- pos_inds = ((labels >= 0)
- & (labels < bg_class_ind)).nonzero().squeeze(1)
- score = label_weights.new_zeros(labels.shape)
- if len(pos_inds) > 0:
- pos_bbox_targets = bbox_targets[pos_inds]
- pos_bbox_pred = bbox_pred[pos_inds]
- pos_anchors = anchors[pos_inds]
- pos_anchor_centers = self.anchor_center(pos_anchors) / stride[0]
- weight_targets = cls_score.detach().sigmoid()
- weight_targets = weight_targets.max(dim=1)[0][pos_inds]
- pos_bbox_pred_corners = self.integral(pos_bbox_pred)
- pos_decode_bbox_pred = self.bbox_coder.decode(
- pos_anchor_centers, pos_bbox_pred_corners)
- pos_decode_bbox_targets = pos_bbox_targets / stride[0]
- score[pos_inds] = bbox_overlaps(
- pos_decode_bbox_pred.detach(),
- pos_decode_bbox_targets,
- is_aligned=True)
- pred_corners = pos_bbox_pred.reshape(-1, self.reg_max + 1)
- pos_soft_targets = soft_targets[pos_inds]
- soft_corners = pos_soft_targets.reshape(-1, self.reg_max + 1)
- target_corners = self.bbox_coder.encode(pos_anchor_centers,
- pos_decode_bbox_targets,
- self.reg_max).reshape(-1)
- # regression loss
- loss_bbox = self.loss_bbox(
- pos_decode_bbox_pred,
- pos_decode_bbox_targets,
- weight=weight_targets,
- avg_factor=1.0)
- # dfl loss
- loss_dfl = self.loss_dfl(
- pred_corners,
- target_corners,
- weight=weight_targets[:, None].expand(-1, 4).reshape(-1),
- avg_factor=4.0)
- # ld loss
- loss_ld = self.loss_ld(
- pred_corners,
- soft_corners,
- weight=weight_targets[:, None].expand(-1, 4).reshape(-1),
- avg_factor=4.0)
- else:
- loss_ld = bbox_pred.sum() * 0
- loss_bbox = bbox_pred.sum() * 0
- loss_dfl = bbox_pred.sum() * 0
- weight_targets = bbox_pred.new_tensor(0)
- # cls (qfl) loss
- loss_cls = self.loss_cls(
- cls_score, (labels, score),
- weight=label_weights,
- avg_factor=avg_factor)
- return loss_cls, loss_bbox, loss_dfl, loss_ld, weight_targets.sum()
- def loss(self, x: List[Tensor], out_teacher: Tuple[Tensor],
- batch_data_samples: SampleList) -> dict:
- """
- Args:
- x (list[Tensor]): Features from FPN.
- out_teacher (tuple[Tensor]): The output of teacher.
- batch_data_samples (list[:obj:`DetDataSample`]): The batch
- data samples. It usually includes information such
- as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`.
- Returns:
- tuple[dict, list]: The loss components and proposals of each image.
- - losses (dict[str, Tensor]): A dictionary of loss components.
- - proposal_list (list[Tensor]): Proposals of each image.
- """
- outputs = unpack_gt_instances(batch_data_samples)
- batch_gt_instances, batch_gt_instances_ignore, batch_img_metas \
- = outputs
- outs = self(x)
- soft_targets = out_teacher[1]
- loss_inputs = outs + (batch_gt_instances, batch_img_metas,
- soft_targets)
- losses = self.loss_by_feat(
- *loss_inputs, batch_gt_instances_ignore=batch_gt_instances_ignore)
- return losses
- def loss_by_feat(
- self,
- cls_scores: List[Tensor],
- bbox_preds: List[Tensor],
- batch_gt_instances: InstanceList,
- batch_img_metas: List[dict],
- soft_targets: List[Tensor],
- batch_gt_instances_ignore: OptInstanceList = None) -> dict:
- """Compute losses of the head.
- Args:
- cls_scores (list[Tensor]): Cls and quality scores for each scale
- level has shape (N, num_classes, H, W).
- bbox_preds (list[Tensor]): Box distribution logits for each scale
- level with shape (N, 4*(n+1), H, W), n is max value of integral
- set.
- batch_gt_instances (list[:obj:`InstanceData`]): Batch of
- gt_instance. It usually includes ``bboxes`` and ``labels``
- attributes.
- soft_targets (list[Tensor]): Soft BBox regression targets.
- batch_img_metas (list[dict]): Meta information of each image, e.g.,
- image size, scaling factor, etc.
- batch_gt_instances_ignore (list[:obj:`InstanceData`], Optional):
- Batch of gt_instances_ignore. It includes ``bboxes`` attribute
- data that is ignored during training and testing.
- Defaults to None.
- Returns:
- dict[str, Tensor]: A dictionary of loss components.
- """
- featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
- assert len(featmap_sizes) == self.prior_generator.num_levels
- device = cls_scores[0].device
- anchor_list, valid_flag_list = self.get_anchors(
- featmap_sizes, batch_img_metas, device=device)
- cls_reg_targets = self.get_targets(
- anchor_list,
- valid_flag_list,
- batch_gt_instances,
- batch_img_metas,
- batch_gt_instances_ignore=batch_gt_instances_ignore)
- (anchor_list, labels_list, label_weights_list, bbox_targets_list,
- bbox_weights_list, avg_factor) = cls_reg_targets
- avg_factor = reduce_mean(
- torch.tensor(avg_factor, dtype=torch.float, device=device)).item()
- losses_cls, losses_bbox, losses_dfl, losses_ld, \
- avg_factor = multi_apply(
- self.loss_by_feat_single,
- anchor_list,
- cls_scores,
- bbox_preds,
- labels_list,
- label_weights_list,
- bbox_targets_list,
- self.prior_generator.strides,
- soft_targets,
- avg_factor=avg_factor)
- avg_factor = sum(avg_factor) + 1e-6
- avg_factor = reduce_mean(avg_factor).item()
- losses_bbox = [x / avg_factor for x in losses_bbox]
- losses_dfl = [x / avg_factor for x in losses_dfl]
- return dict(
- loss_cls=losses_cls,
- loss_bbox=losses_bbox,
- loss_dfl=losses_dfl,
- loss_ld=losses_ld)
|