123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import sys
- import warnings
- from inspect import signature
- import torch
- from mmcv.ops import batched_nms
- from mmengine.structures import InstanceData
- from mmdet.structures.bbox import bbox_mapping_back
- from ..test_time_augs import merge_aug_proposals
- if sys.version_info >= (3, 7):
- from mmdet.utils.contextmanagers import completed
- class BBoxTestMixin(object):
- """Mixin class for testing det bboxes via DenseHead."""
- def simple_test_bboxes(self, feats, img_metas, rescale=False):
- """Test det bboxes without test-time augmentation, can be applied in
- DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``,
- etc.
- Args:
- feats (tuple[torch.Tensor]): Multi-level features from the
- upstream network, each is a 4D-tensor.
- img_metas (list[dict]): List of image information.
- rescale (bool, optional): Whether to rescale the results.
- Defaults to False.
- Returns:
- list[obj:`InstanceData`]: Detection results of each
- image after the post process. \
- Each item usually contains following keys. \
- - scores (Tensor): Classification scores, has a shape
- (num_instance,)
- - labels (Tensor): Labels of bboxes, has a shape
- (num_instances,).
- - bboxes (Tensor): Has a shape (num_instances, 4),
- the last dimension 4 arrange as (x1, y1, x2, y2).
- """
- warnings.warn('You are calling `simple_test_bboxes` in '
- '`dense_test_mixins`, but the `dense_test_mixins`'
- 'will be deprecated soon. Please use '
- '`simple_test` instead.')
- outs = self.forward(feats)
- results_list = self.get_results(
- *outs, img_metas=img_metas, rescale=rescale)
- return results_list
- def aug_test_bboxes(self, feats, img_metas, rescale=False):
- """Test det bboxes with test time augmentation, can be applied in
- DenseHead except for ``RPNHead`` and its variants, e.g., ``GARPNHead``,
- etc.
- Args:
- feats (list[Tensor]): the outer list indicates test-time
- augmentations and inner Tensor should have a shape NxCxHxW,
- which contains features for all images in the batch.
- img_metas (list[list[dict]]): the outer list indicates test-time
- augs (multiscale, flip, etc.) and the inner list indicates
- images in a batch. each dict has image information.
- rescale (bool, optional): Whether to rescale the results.
- Defaults to False.
- Returns:
- list[tuple[Tensor, Tensor]]: Each item in result_list is 2-tuple.
- The first item is ``bboxes`` with shape (n, 5),
- where 5 represent (tl_x, tl_y, br_x, br_y, score).
- The shape of the second tensor in the tuple is ``labels``
- with shape (n,). The length of list should always be 1.
- """
- warnings.warn('You are calling `aug_test_bboxes` in '
- '`dense_test_mixins`, but the `dense_test_mixins`'
- 'will be deprecated soon. Please use '
- '`aug_test` instead.')
- # check with_nms argument
- gb_sig = signature(self.get_results)
- gb_args = [p.name for p in gb_sig.parameters.values()]
- gbs_sig = signature(self._get_results_single)
- gbs_args = [p.name for p in gbs_sig.parameters.values()]
- assert ('with_nms' in gb_args) and ('with_nms' in gbs_args), \
- f'{self.__class__.__name__}' \
- ' does not support test-time augmentation'
- aug_bboxes = []
- aug_scores = []
- aug_labels = []
- for x, img_meta in zip(feats, img_metas):
- # only one image in the batch
- outs = self.forward(x)
- bbox_outputs = self.get_results(
- *outs,
- img_metas=img_meta,
- cfg=self.test_cfg,
- rescale=False,
- with_nms=False)[0]
- aug_bboxes.append(bbox_outputs.bboxes)
- aug_scores.append(bbox_outputs.scores)
- if len(bbox_outputs) >= 3:
- aug_labels.append(bbox_outputs.labels)
- # after merging, bboxes will be rescaled to the original image size
- merged_bboxes, merged_scores = self.merge_aug_bboxes(
- aug_bboxes, aug_scores, img_metas)
- merged_labels = torch.cat(aug_labels, dim=0) if aug_labels else None
- if merged_bboxes.numel() == 0:
- det_bboxes = torch.cat([merged_bboxes, merged_scores[:, None]], -1)
- return [
- (det_bboxes, merged_labels),
- ]
- det_bboxes, keep_idxs = batched_nms(merged_bboxes, merged_scores,
- merged_labels, self.test_cfg.nms)
- det_bboxes = det_bboxes[:self.test_cfg.max_per_img]
- det_labels = merged_labels[keep_idxs][:self.test_cfg.max_per_img]
- if rescale:
- _det_bboxes = det_bboxes
- else:
- _det_bboxes = det_bboxes.clone()
- _det_bboxes[:, :4] *= det_bboxes.new_tensor(
- img_metas[0][0]['scale_factor'])
- results = InstanceData()
- results.bboxes = _det_bboxes[:, :4]
- results.scores = _det_bboxes[:, 4]
- results.labels = det_labels
- return [results]
- def aug_test_rpn(self, feats, img_metas):
- """Test with augmentation for only for ``RPNHead`` and its variants,
- e.g., ``GARPNHead``, etc.
- Args:
- feats (tuple[Tensor]): Features from the upstream network, each is
- a 4D-tensor.
- img_metas (list[dict]): Meta info of each image.
- Returns:
- list[Tensor]: Proposals of each image, each item has shape (n, 5),
- where 5 represent (tl_x, tl_y, br_x, br_y, score).
- """
- samples_per_gpu = len(img_metas[0])
- aug_proposals = [[] for _ in range(samples_per_gpu)]
- for x, img_meta in zip(feats, img_metas):
- results_list = self.simple_test_rpn(x, img_meta)
- for i, results in enumerate(results_list):
- proposals = torch.cat(
- [results.bboxes, results.scores[:, None]], dim=-1)
- aug_proposals[i].append(proposals)
- # reorganize the order of 'img_metas' to match the dimensions
- # of 'aug_proposals'
- aug_img_metas = []
- for i in range(samples_per_gpu):
- aug_img_meta = []
- for j in range(len(img_metas)):
- aug_img_meta.append(img_metas[j][i])
- aug_img_metas.append(aug_img_meta)
- # after merging, proposals will be rescaled to the original image size
- merged_proposals = []
- for proposals, aug_img_meta in zip(aug_proposals, aug_img_metas):
- merged_proposal = merge_aug_proposals(proposals, aug_img_meta,
- self.test_cfg)
- results = InstanceData()
- results.bboxes = merged_proposal[:, :4]
- results.scores = merged_proposal[:, 4]
- merged_proposals.append(results)
- return merged_proposals
- if sys.version_info >= (3, 7):
- async def async_simple_test_rpn(self, x, img_metas):
- sleep_interval = self.test_cfg.pop('async_sleep_interval', 0.025)
- async with completed(
- __name__, 'rpn_head_forward',
- sleep_interval=sleep_interval):
- rpn_outs = self(x)
- proposal_list = self.get_results(*rpn_outs, img_metas=img_metas)
- return proposal_list
- def merge_aug_bboxes(self, aug_bboxes, aug_scores, img_metas):
- """Merge augmented detection bboxes and scores.
- Args:
- aug_bboxes (list[Tensor]): shape (n, 4*#class)
- aug_scores (list[Tensor] or None): shape (n, #class)
- img_shapes (list[Tensor]): shape (3, ).
- Returns:
- tuple[Tensor]: ``bboxes`` with shape (n,4), where
- 4 represent (tl_x, tl_y, br_x, br_y)
- and ``scores`` with shape (n,).
- """
- recovered_bboxes = []
- for bboxes, img_info in zip(aug_bboxes, img_metas):
- img_shape = img_info[0]['img_shape']
- scale_factor = img_info[0]['scale_factor']
- flip = img_info[0]['flip']
- flip_direction = img_info[0]['flip_direction']
- bboxes = bbox_mapping_back(bboxes, img_shape, scale_factor, flip,
- flip_direction)
- recovered_bboxes.append(bboxes)
- bboxes = torch.cat(recovered_bboxes, dim=0)
- if aug_scores is None:
- return bboxes
- else:
- scores = torch.cat(aug_scores, dim=0)
- return bboxes, scores
|