123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- # Copyright (c) OpenMMLab. All rights reserved.
- from typing import Tuple
- import torch.nn as nn
- from mmcv.cnn import Linear
- from mmengine.model import bias_init_with_prob, constant_init
- from torch import Tensor
- from mmdet.registry import MODELS
- from mmdet.structures import SampleList
- from mmdet.utils import InstanceList
- from ..layers import MLP, inverse_sigmoid
- from .conditional_detr_head import ConditionalDETRHead
- @MODELS.register_module()
- class DABDETRHead(ConditionalDETRHead):
- """Head of DAB-DETR. DAB-DETR: Dynamic Anchor Boxes are Better Queries for
- DETR.
- More details can be found in the `paper
- <https://arxiv.org/abs/2201.12329>`_ .
- """
- def _init_layers(self) -> None:
- """Initialize layers of the transformer head."""
- # cls branch
- self.fc_cls = Linear(self.embed_dims, self.cls_out_channels)
- # reg branch
- self.fc_reg = MLP(self.embed_dims, self.embed_dims, 4, 3)
- def init_weights(self) -> None:
- """initialize weights."""
- if self.loss_cls.use_sigmoid:
- bias_init = bias_init_with_prob(0.01)
- nn.init.constant_(self.fc_cls.bias, bias_init)
- constant_init(self.fc_reg.layers[-1], 0., bias=0.)
- def forward(self, hidden_states: Tensor,
- references: Tensor) -> Tuple[Tensor, Tensor]:
- """"Forward function.
- Args:
- hidden_states (Tensor): Features from transformer decoder. If
- `return_intermediate_dec` is True output has shape
- (num_decoder_layers, bs, num_queries, dim), else has shape (1,
- bs, num_queries, dim) which only contains the last layer
- outputs.
- references (Tensor): References from transformer decoder. If
- `return_intermediate_dec` is True output has shape
- (num_decoder_layers, bs, num_queries, 2/4), else has shape (1,
- bs, num_queries, 2/4)
- which only contains the last layer reference.
- Returns:
- tuple[Tensor]: results of head containing the following tensor.
- - layers_cls_scores (Tensor): Outputs from the classification head,
- shape (num_decoder_layers, bs, num_queries, cls_out_channels).
- Note cls_out_channels should include background.
- - layers_bbox_preds (Tensor): Sigmoid outputs from the regression
- head with normalized coordinate format (cx, cy, w, h), has shape
- (num_decoder_layers, bs, num_queries, 4).
- """
- layers_cls_scores = self.fc_cls(hidden_states)
- references_before_sigmoid = inverse_sigmoid(references, eps=1e-3)
- tmp_reg_preds = self.fc_reg(hidden_states)
- tmp_reg_preds[..., :references_before_sigmoid.
- size(-1)] += references_before_sigmoid
- layers_bbox_preds = tmp_reg_preds.sigmoid()
- return layers_cls_scores, layers_bbox_preds
- def predict(self,
- hidden_states: Tensor,
- references: Tensor,
- batch_data_samples: SampleList,
- rescale: bool = True) -> InstanceList:
- """Perform forward propagation of the detection head and predict
- detection results on the features of the upstream network. Over-write
- because img_metas are needed as inputs for bbox_head.
- Args:
- hidden_states (Tensor): Feature from the transformer decoder, has
- shape (num_decoder_layers, bs, num_queries, dim).
- references (Tensor): references from the transformer decoder, has
- shape (num_decoder_layers, bs, num_queries, 2/4).
- batch_data_samples (List[:obj:`DetDataSample`]): The Data
- Samples. It usually includes information such as
- `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`.
- rescale (bool, optional): Whether to rescale the results.
- Defaults to True.
- Returns:
- list[obj:`InstanceData`]: Detection results of each image
- after the post process.
- """
- batch_img_metas = [
- data_samples.metainfo for data_samples in batch_data_samples
- ]
- last_layer_hidden_state = hidden_states[-1].unsqueeze(0)
- last_layer_reference = references[-1].unsqueeze(0)
- outs = self(last_layer_hidden_state, last_layer_reference)
- predictions = self.predict_by_feat(
- *outs, batch_img_metas=batch_img_metas, rescale=rescale)
- return predictions
|