123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 |
- # Copyright (c) OpenMMLab. All rights reserved.
- import warnings
- import torch.nn as nn
- from mmcv.cnn import ConvModule
- from mmengine.model import BaseModule
- from torch.nn.modules.batchnorm import _BatchNorm
- from mmdet.registry import MODELS
- from ..layers import InvertedResidual
- from ..utils import make_divisible
- @MODELS.register_module()
- class MobileNetV2(BaseModule):
- """MobileNetV2 backbone.
- Args:
- widen_factor (float): Width multiplier, multiply number of
- channels in each layer by this amount. Default: 1.0.
- out_indices (Sequence[int], optional): Output from which stages.
- Default: (1, 2, 4, 7).
- frozen_stages (int): Stages to be frozen (all param fixed).
- Default: -1, which means not freezing any parameters.
- conv_cfg (dict, optional): Config dict for convolution layer.
- Default: None, which means using conv2d.
- norm_cfg (dict): Config dict for normalization layer.
- Default: dict(type='BN').
- act_cfg (dict): Config dict for activation layer.
- Default: dict(type='ReLU6').
- norm_eval (bool): Whether to set norm layers to eval mode, namely,
- freeze running stats (mean and var). Note: Effect on Batch Norm
- and its variants only. Default: False.
- with_cp (bool): Use checkpoint or not. Using checkpoint will save some
- memory while slowing down the training speed. Default: False.
- pretrained (str, optional): model pretrained path. Default: None
- init_cfg (dict or list[dict], optional): Initialization config dict.
- Default: None
- """
- # Parameters to build layers. 4 parameters are needed to construct a
- # layer, from left to right: expand_ratio, channel, num_blocks, stride.
- arch_settings = [[1, 16, 1, 1], [6, 24, 2, 2], [6, 32, 3, 2],
- [6, 64, 4, 2], [6, 96, 3, 1], [6, 160, 3, 2],
- [6, 320, 1, 1]]
- def __init__(self,
- widen_factor=1.,
- out_indices=(1, 2, 4, 7),
- frozen_stages=-1,
- conv_cfg=None,
- norm_cfg=dict(type='BN'),
- act_cfg=dict(type='ReLU6'),
- norm_eval=False,
- with_cp=False,
- pretrained=None,
- init_cfg=None):
- super(MobileNetV2, self).__init__(init_cfg)
- self.pretrained = pretrained
- assert not (init_cfg and pretrained), \
- 'init_cfg and pretrained cannot be specified at the same time'
- if isinstance(pretrained, str):
- warnings.warn('DeprecationWarning: pretrained is deprecated, '
- 'please use "init_cfg" instead')
- self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
- elif pretrained is None:
- if init_cfg is None:
- self.init_cfg = [
- dict(type='Kaiming', layer='Conv2d'),
- dict(
- type='Constant',
- val=1,
- layer=['_BatchNorm', 'GroupNorm'])
- ]
- else:
- raise TypeError('pretrained must be a str or None')
- self.widen_factor = widen_factor
- self.out_indices = out_indices
- if not set(out_indices).issubset(set(range(0, 8))):
- raise ValueError('out_indices must be a subset of range'
- f'(0, 8). But received {out_indices}')
- if frozen_stages not in range(-1, 8):
- raise ValueError('frozen_stages must be in range(-1, 8). '
- f'But received {frozen_stages}')
- self.out_indices = out_indices
- self.frozen_stages = frozen_stages
- self.conv_cfg = conv_cfg
- self.norm_cfg = norm_cfg
- self.act_cfg = act_cfg
- self.norm_eval = norm_eval
- self.with_cp = with_cp
- self.in_channels = make_divisible(32 * widen_factor, 8)
- self.conv1 = ConvModule(
- in_channels=3,
- out_channels=self.in_channels,
- kernel_size=3,
- stride=2,
- padding=1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg)
- self.layers = []
- for i, layer_cfg in enumerate(self.arch_settings):
- expand_ratio, channel, num_blocks, stride = layer_cfg
- out_channels = make_divisible(channel * widen_factor, 8)
- inverted_res_layer = self.make_layer(
- out_channels=out_channels,
- num_blocks=num_blocks,
- stride=stride,
- expand_ratio=expand_ratio)
- layer_name = f'layer{i + 1}'
- self.add_module(layer_name, inverted_res_layer)
- self.layers.append(layer_name)
- if widen_factor > 1.0:
- self.out_channel = int(1280 * widen_factor)
- else:
- self.out_channel = 1280
- layer = ConvModule(
- in_channels=self.in_channels,
- out_channels=self.out_channel,
- kernel_size=1,
- stride=1,
- padding=0,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg)
- self.add_module('conv2', layer)
- self.layers.append('conv2')
- def make_layer(self, out_channels, num_blocks, stride, expand_ratio):
- """Stack InvertedResidual blocks to build a layer for MobileNetV2.
- Args:
- out_channels (int): out_channels of block.
- num_blocks (int): number of blocks.
- stride (int): stride of the first block. Default: 1
- expand_ratio (int): Expand the number of channels of the
- hidden layer in InvertedResidual by this ratio. Default: 6.
- """
- layers = []
- for i in range(num_blocks):
- if i >= 1:
- stride = 1
- layers.append(
- InvertedResidual(
- self.in_channels,
- out_channels,
- mid_channels=int(round(self.in_channels * expand_ratio)),
- stride=stride,
- with_expand_conv=expand_ratio != 1,
- conv_cfg=self.conv_cfg,
- norm_cfg=self.norm_cfg,
- act_cfg=self.act_cfg,
- with_cp=self.with_cp))
- self.in_channels = out_channels
- return nn.Sequential(*layers)
- def _freeze_stages(self):
- if self.frozen_stages >= 0:
- for param in self.conv1.parameters():
- param.requires_grad = False
- for i in range(1, self.frozen_stages + 1):
- layer = getattr(self, f'layer{i}')
- layer.eval()
- for param in layer.parameters():
- param.requires_grad = False
- def forward(self, x):
- """Forward function."""
- x = self.conv1(x)
- outs = []
- for i, layer_name in enumerate(self.layers):
- layer = getattr(self, layer_name)
- x = layer(x)
- if i in self.out_indices:
- outs.append(x)
- return tuple(outs)
- def train(self, mode=True):
- """Convert the model into training mode while keep normalization layer
- frozen."""
- super(MobileNetV2, self).train(mode)
- self._freeze_stages()
- if mode and self.norm_eval:
- for m in self.modules():
- # trick: eval have effect on BatchNorm only
- if isinstance(m, _BatchNorm):
- m.eval()
|