sabl-cascade-rcnn_r101_fpn_1x_coco.py 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. _base_ = [
  2. '../_base_/models/cascade-rcnn_r50_fpn.py',
  3. '../_base_/datasets/coco_detection.py',
  4. '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
  5. ]
  6. # model settings
  7. model = dict(
  8. backbone=dict(
  9. depth=101,
  10. init_cfg=dict(type='Pretrained',
  11. checkpoint='torchvision://resnet101')),
  12. roi_head=dict(bbox_head=[
  13. dict(
  14. type='SABLHead',
  15. num_classes=80,
  16. cls_in_channels=256,
  17. reg_in_channels=256,
  18. roi_feat_size=7,
  19. reg_feat_up_ratio=2,
  20. reg_pre_kernel=3,
  21. reg_post_kernel=3,
  22. reg_pre_num=2,
  23. reg_post_num=1,
  24. cls_out_channels=1024,
  25. reg_offset_out_channels=256,
  26. reg_cls_out_channels=256,
  27. num_cls_fcs=1,
  28. num_reg_fcs=0,
  29. reg_class_agnostic=True,
  30. norm_cfg=None,
  31. bbox_coder=dict(
  32. type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.7),
  33. loss_cls=dict(
  34. type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
  35. loss_bbox_cls=dict(
  36. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
  37. loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1,
  38. loss_weight=1.0)),
  39. dict(
  40. type='SABLHead',
  41. num_classes=80,
  42. cls_in_channels=256,
  43. reg_in_channels=256,
  44. roi_feat_size=7,
  45. reg_feat_up_ratio=2,
  46. reg_pre_kernel=3,
  47. reg_post_kernel=3,
  48. reg_pre_num=2,
  49. reg_post_num=1,
  50. cls_out_channels=1024,
  51. reg_offset_out_channels=256,
  52. reg_cls_out_channels=256,
  53. num_cls_fcs=1,
  54. num_reg_fcs=0,
  55. reg_class_agnostic=True,
  56. norm_cfg=None,
  57. bbox_coder=dict(
  58. type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.5),
  59. loss_cls=dict(
  60. type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
  61. loss_bbox_cls=dict(
  62. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
  63. loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1,
  64. loss_weight=1.0)),
  65. dict(
  66. type='SABLHead',
  67. num_classes=80,
  68. cls_in_channels=256,
  69. reg_in_channels=256,
  70. roi_feat_size=7,
  71. reg_feat_up_ratio=2,
  72. reg_pre_kernel=3,
  73. reg_post_kernel=3,
  74. reg_pre_num=2,
  75. reg_post_num=1,
  76. cls_out_channels=1024,
  77. reg_offset_out_channels=256,
  78. reg_cls_out_channels=256,
  79. num_cls_fcs=1,
  80. num_reg_fcs=0,
  81. reg_class_agnostic=True,
  82. norm_cfg=None,
  83. bbox_coder=dict(
  84. type='BucketingBBoxCoder', num_buckets=14, scale_factor=1.3),
  85. loss_cls=dict(
  86. type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
  87. loss_bbox_cls=dict(
  88. type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
  89. loss_bbox_reg=dict(type='SmoothL1Loss', beta=0.1, loss_weight=1.0))
  90. ]))